bullet-physics/Demos/ConvexDecompositionDemo/ConvexDecompositionDemo.cpp
2014-02-21 21:49:29 +01:00

779 lines
21 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "hacdCircularList.h"
#include "hacdVector.h"
#include "hacdICHull.h"
#include "hacdGraph.h"
#include "hacdHACD.h"
#include "cd_wavefront.h"
#include "ConvexBuilder.h"
#include "btBulletDynamicsCommon.h"
#include "LinearMath/btQuickprof.h"
#include "LinearMath/btIDebugDraw.h"
#include "LinearMath/btGeometryUtil.h"
#include "BulletCollision/CollisionShapes/btShapeHull.h"
#include "GLDebugDrawer.h"
GLDebugDrawer gDebugDrawer;
//#define TEST_SERIALIZATION
//#define NO_OBJ_TO_BULLET
#ifdef TEST_SERIALIZATION
#include "LinearMath/btSerializer.h"
#include "btBulletFile.h"
#include "btBulletWorldImporter.h"
#endif
//#define USE_PARALLEL_DISPATCHER 1
#ifdef USE_PARALLEL_DISPATCHER
#include "../../Extras/BulletMultiThreaded/SpuGatheringCollisionDispatcher.h"
#include "../../Extras/BulletMultiThreaded/Win32ThreadSupport.h"
#include "../../Extras/BulletMultiThreaded/SpuNarrowPhaseCollisionTask/SpuGatheringCollisionTask.h"
#endif//USE_PARALLEL_DISPATCHER
#include "BulletCollision/CollisionDispatch/btCompoundCollisionAlgorithm.h"//for the callback
bool MyCompoundChildShapeCallback(const btCollisionShape* pShape0, const btCollisionShape* pShape1)
{
return true;
}
#include "GLDebugFont.h"
#include <stdio.h> //printf debugging
#include "ConvexDecompositionDemo.h"
#include "GL_ShapeDrawer.h"
#include "GlutStuff.h"
btVector3 centroid=btVector3(0,0,0);
btVector3 convexDecompositionObjectOffset(10,0,0);
#define CUBE_HALF_EXTENTS 4
////////////////////////////////////
unsigned int tcount = 0;
//sEnableSAT creates the data structures required for performing SAT tests between convex polyhedra, as alternative to GJK
bool sEnableSAT = false;
void ConvexDecompositionDemo::initPhysics()
{
initPhysics("file.obj");
}
///MyContactCallback is just an example to show how to get access to the child shape that collided
bool MyContactCallback (
btManifoldPoint& cp,
const btCollisionObjectWrapper* colObj0Wrap,
int partId0,
int index0,
const btCollisionObjectWrapper* colObj1Wrap,
int partId1,
int index1)
{
if (colObj0Wrap->getCollisionObject()->getCollisionShape()->getShapeType()==COMPOUND_SHAPE_PROXYTYPE)
{
btCompoundShape* compound = (btCompoundShape*)colObj0Wrap->getCollisionObject()->getCollisionShape();
btCollisionShape* childShape;
childShape = compound->getChildShape(index0);
}
if (colObj1Wrap->getCollisionObject()->getCollisionShape()->getShapeType()==COMPOUND_SHAPE_PROXYTYPE)
{
btCompoundShape* compound = (btCompoundShape*)colObj1Wrap->getCollisionObject()->getCollisionShape();
btCollisionShape* childShape;
childShape = compound->getChildShape(index1);
}
return true;
}
void ConvexDecompositionDemo::setupEmptyDynamicsWorld()
{
m_collisionConfiguration = new btDefaultCollisionConfiguration();
#ifdef USE_PARALLEL_DISPATCHER
#ifdef USE_WIN32_THREADING
int maxNumOutstandingTasks = 4;//number of maximum outstanding tasks
Win32ThreadSupport* threadSupport = new Win32ThreadSupport(Win32ThreadSupport::Win32ThreadConstructionInfo(
"collision",
processCollisionTask,
createCollisionLocalStoreMemory,
maxNumOutstandingTasks));
#else
///@todo other platform threading
///Playstation 3 SPU (SPURS) version is available through PS3 Devnet
///Libspe2 SPU support will be available soon
///pthreads version
///you can hook it up to your custom task scheduler by deriving from btThreadSupportInterface
#endif
m_dispatcher = new SpuGatheringCollisionDispatcher(threadSupport,maxNumOutstandingTasks,m_collisionConfiguration);
#else
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
#endif//USE_PARALLEL_DISPATCHER
gCompoundChildShapePairCallback = MyCompoundChildShapeCallback;
convexDecompositionObjectOffset.setValue(10,0,0);
btVector3 worldAabbMin(-10000,-10000,-10000);
btVector3 worldAabbMax(10000,10000,10000);
m_broadphase = new btAxisSweep3(worldAabbMin,worldAabbMax);
//m_broadphase = new btSimpleBroadphase();
m_solver = new btSequentialImpulseConstraintSolver();
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration);
#ifdef USE_PARALLEL_DISPATCHER
m_dynamicsWorld->getDispatchInfo().m_enableSPU = true;
#endif //USE_PARALLEL_DISPATCHER
}
void ConvexDecompositionDemo::initPhysics(const char* filename)
{
gContactAddedCallback = &MyContactCallback;
setupEmptyDynamicsWorld();
getDynamicsWorld()->setDebugDrawer(&gDebugDrawer);
setTexturing(true);
setShadows(true);
setCameraDistance(26.f);
#ifndef NO_OBJ_TO_BULLET
ConvexDecomposition::WavefrontObj wo;
tcount = wo.loadObj(filename);
if (!tcount)
{
//when running this app from visual studio, the default starting folder is different, so make a second attempt...
tcount = wo.loadObj("../../file.obj");
}
if (!tcount)
{
//cmake generated msvc files need 4 levels deep back... so make a 3rd attempt...
tcount = wo.loadObj("../../../../file.obj");
}
btTransform startTransform;
startTransform.setIdentity();
startTransform.setOrigin(btVector3(0,-4.5,0));
btCollisionShape* boxShape = new btBoxShape(btVector3(30,2,30));
m_collisionShapes.push_back(boxShape);
localCreateRigidBody(0.f,startTransform,boxShape);
class MyConvexDecomposition : public ConvexDecomposition::ConvexDecompInterface
{
ConvexDecompositionDemo* m_convexDemo;
public:
btAlignedObjectArray<btConvexHullShape*> m_convexShapes;
btAlignedObjectArray<btVector3> m_convexCentroids;
MyConvexDecomposition (FILE* outputFile,ConvexDecompositionDemo* demo)
:m_convexDemo(demo),
mBaseCount(0),
mHullCount(0),
mOutputFile(outputFile)
{
}
virtual void ConvexDecompResult(ConvexDecomposition::ConvexResult &result)
{
btTriangleMesh* trimesh = new btTriangleMesh();
m_convexDemo->m_trimeshes.push_back(trimesh);
btVector3 localScaling(6.f,6.f,6.f);
//export data to .obj
printf("ConvexResult. ");
if (mOutputFile)
{
fprintf(mOutputFile,"## Hull Piece %d with %d vertices and %d triangles.\r\n", mHullCount, result.mHullVcount, result.mHullTcount );
fprintf(mOutputFile,"usemtl Material%i\r\n",mBaseCount);
fprintf(mOutputFile,"o Object%i\r\n",mBaseCount);
for (unsigned int i=0; i<result.mHullVcount; i++)
{
const float *p = &result.mHullVertices[i*3];
fprintf(mOutputFile,"v %0.9f %0.9f %0.9f\r\n", p[0], p[1], p[2] );
}
//calc centroid, to shift vertices around center of mass
centroid.setValue(0,0,0);
btAlignedObjectArray<btVector3> vertices;
if ( 1 )
{
//const unsigned int *src = result.mHullIndices;
for (unsigned int i=0; i<result.mHullVcount; i++)
{
btVector3 vertex(result.mHullVertices[i*3],result.mHullVertices[i*3+1],result.mHullVertices[i*3+2]);
vertex *= localScaling;
centroid += vertex;
}
}
centroid *= 1.f/(float(result.mHullVcount) );
if ( 1 )
{
//const unsigned int *src = result.mHullIndices;
for (unsigned int i=0; i<result.mHullVcount; i++)
{
btVector3 vertex(result.mHullVertices[i*3],result.mHullVertices[i*3+1],result.mHullVertices[i*3+2]);
vertex *= localScaling;
vertex -= centroid ;
vertices.push_back(vertex);
}
}
if ( 1 )
{
const unsigned int *src = result.mHullIndices;
for (unsigned int i=0; i<result.mHullTcount; i++)
{
unsigned int index0 = *src++;
unsigned int index1 = *src++;
unsigned int index2 = *src++;
btVector3 vertex0(result.mHullVertices[index0*3], result.mHullVertices[index0*3+1],result.mHullVertices[index0*3+2]);
btVector3 vertex1(result.mHullVertices[index1*3], result.mHullVertices[index1*3+1],result.mHullVertices[index1*3+2]);
btVector3 vertex2(result.mHullVertices[index2*3], result.mHullVertices[index2*3+1],result.mHullVertices[index2*3+2]);
vertex0 *= localScaling;
vertex1 *= localScaling;
vertex2 *= localScaling;
vertex0 -= centroid;
vertex1 -= centroid;
vertex2 -= centroid;
trimesh->addTriangle(vertex0,vertex1,vertex2);
index0+=mBaseCount;
index1+=mBaseCount;
index2+=mBaseCount;
fprintf(mOutputFile,"f %d %d %d\r\n", index0+1, index1+1, index2+1 );
}
}
// float mass = 1.f;
//this is a tools issue: due to collision margin, convex objects overlap, compensate for it here:
//#define SHRINK_OBJECT_INWARDS 1
#ifdef SHRINK_OBJECT_INWARDS
float collisionMargin = 0.01f;
btAlignedObjectArray<btVector3> planeEquations;
btGeometryUtil::getPlaneEquationsFromVertices(vertices,planeEquations);
btAlignedObjectArray<btVector3> shiftedPlaneEquations;
for (int p=0;p<planeEquations.size();p++)
{
btVector3 plane = planeEquations[p];
plane[3] += collisionMargin;
shiftedPlaneEquations.push_back(plane);
}
btAlignedObjectArray<btVector3> shiftedVertices;
btGeometryUtil::getVerticesFromPlaneEquations(shiftedPlaneEquations,shiftedVertices);
btConvexHullShape* convexShape = new btConvexHullShape(&(shiftedVertices[0].getX()),shiftedVertices.size());
#else //SHRINK_OBJECT_INWARDS
btConvexHullShape* convexShape = new btConvexHullShape(&(vertices[0].getX()),vertices.size());
#endif
if (sEnableSAT)
convexShape->initializePolyhedralFeatures();
convexShape->setMargin(0.01f);
m_convexShapes.push_back(convexShape);
m_convexCentroids.push_back(centroid);
m_convexDemo->m_collisionShapes.push_back(convexShape);
mBaseCount+=result.mHullVcount; // advance the 'base index' counter.
}
}
int mBaseCount;
int mHullCount;
FILE* mOutputFile;
};
if (tcount)
{
btTriangleMesh* trimesh = new btTriangleMesh();
m_trimeshes.push_back(trimesh);
btVector3 localScaling(6.f,6.f,6.f);
int i;
for ( i=0;i<wo.mTriCount;i++)
{
int index0 = wo.mIndices[i*3];
int index1 = wo.mIndices[i*3+1];
int index2 = wo.mIndices[i*3+2];
btVector3 vertex0(wo.mVertices[index0*3], wo.mVertices[index0*3+1],wo.mVertices[index0*3+2]);
btVector3 vertex1(wo.mVertices[index1*3], wo.mVertices[index1*3+1],wo.mVertices[index1*3+2]);
btVector3 vertex2(wo.mVertices[index2*3], wo.mVertices[index2*3+1],wo.mVertices[index2*3+2]);
vertex0 *= localScaling;
vertex1 *= localScaling;
vertex2 *= localScaling;
trimesh->addTriangle(vertex0,vertex1,vertex2);
}
btConvexShape* tmpConvexShape = new btConvexTriangleMeshShape(trimesh);
printf("old numTriangles= %d\n",wo.mTriCount);
printf("old numIndices = %d\n",wo.mTriCount*3);
printf("old numVertices = %d\n",wo.mVertexCount);
printf("reducing vertices by creating a convex hull\n");
//create a hull approximation
btShapeHull* hull = new btShapeHull(tmpConvexShape);
btScalar margin = tmpConvexShape->getMargin();
hull->buildHull(margin);
tmpConvexShape->setUserPointer(hull);
printf("new numTriangles = %d\n", hull->numTriangles ());
printf("new numIndices = %d\n", hull->numIndices ());
printf("new numVertices = %d\n", hull->numVertices ());
btConvexHullShape* convexShape = new btConvexHullShape();
bool updateLocalAabb = false;
for (i=0;i<hull->numVertices();i++)
{
convexShape->addPoint(hull->getVertexPointer()[i],updateLocalAabb);
}
convexShape->recalcLocalAabb();
if (sEnableSAT)
convexShape->initializePolyhedralFeatures();
delete tmpConvexShape;
delete hull;
m_collisionShapes.push_back(convexShape);
float mass = 1.f;
btTransform startTransform;
startTransform.setIdentity();
startTransform.setOrigin(btVector3(0,2,14));
localCreateRigidBody(mass, startTransform,convexShape);
bool useQuantization = true;
btCollisionShape* concaveShape = new btBvhTriangleMeshShape(trimesh,useQuantization);
startTransform.setOrigin(convexDecompositionObjectOffset);
localCreateRigidBody(0.f,startTransform,concaveShape);
m_collisionShapes.push_back (concaveShape);
}
if (tcount)
{
//-----------------------------------
// Bullet Convex Decomposition
//-----------------------------------
char outputFileName[512];
strcpy(outputFileName,filename);
char *dot = strstr(outputFileName,".");
if ( dot )
*dot = 0;
strcat(outputFileName,"_convex.obj");
FILE* outputFile = fopen(outputFileName,"wb");
unsigned int depth = 5;
float cpercent = 5;
float ppercent = 15;
unsigned int maxv = 16;
float skinWidth = 0.0;
printf("WavefrontObj num triangles read %i\n",tcount);
ConvexDecomposition::DecompDesc desc;
desc.mVcount = wo.mVertexCount;
desc.mVertices = wo.mVertices;
desc.mTcount = wo.mTriCount;
desc.mIndices = (unsigned int *)wo.mIndices;
desc.mDepth = depth;
desc.mCpercent = cpercent;
desc.mPpercent = ppercent;
desc.mMaxVertices = maxv;
desc.mSkinWidth = skinWidth;
MyConvexDecomposition convexDecomposition(outputFile,this);
desc.mCallback = &convexDecomposition;
//-----------------------------------------------
// HACD
//-----------------------------------------------
std::vector< HACD::Vec3<HACD::Real> > points;
std::vector< HACD::Vec3<long> > triangles;
for(int i=0; i<wo.mVertexCount; i++ )
{
int index = i*3;
HACD::Vec3<HACD::Real> vertex(wo.mVertices[index], wo.mVertices[index+1],wo.mVertices[index+2]);
points.push_back(vertex);
}
for(int i=0;i<wo.mTriCount;i++)
{
int index = i*3;
HACD::Vec3<long> triangle(wo.mIndices[index], wo.mIndices[index+1], wo.mIndices[index+2]);
triangles.push_back(triangle);
}
HACD::HACD myHACD;
myHACD.SetPoints(&points[0]);
myHACD.SetNPoints(points.size());
myHACD.SetTriangles(&triangles[0]);
myHACD.SetNTriangles(triangles.size());
myHACD.SetCompacityWeight(0.1);
myHACD.SetVolumeWeight(0.0);
// HACD parameters
// Recommended parameters: 2 100 0 0 0 0
size_t nClusters = 2;
double concavity = 100;
bool invert = false;
bool addExtraDistPoints = false;
bool addNeighboursDistPoints = false;
bool addFacesPoints = false;
myHACD.SetNClusters(nClusters); // minimum number of clusters
myHACD.SetNVerticesPerCH(100); // max of 100 vertices per convex-hull
myHACD.SetConcavity(concavity); // maximum concavity
myHACD.SetAddExtraDistPoints(addExtraDistPoints);
myHACD.SetAddNeighboursDistPoints(addNeighboursDistPoints);
myHACD.SetAddFacesPoints(addFacesPoints);
myHACD.Compute();
nClusters = myHACD.GetNClusters();
myHACD.Save("output.wrl", false);
//convexDecomposition.performConvexDecomposition(desc);
// ConvexBuilder cb(desc.mCallback);
// cb.process(desc);
//now create some bodies
if (1)
{
btCompoundShape* compound = new btCompoundShape();
m_collisionShapes.push_back (compound);
btTransform trans;
trans.setIdentity();
for (int c=0;c<nClusters;c++)
{
//generate convex result
size_t nPoints = myHACD.GetNPointsCH(c);
size_t nTriangles = myHACD.GetNTrianglesCH(c);
float* vertices = new float[nPoints*3];
unsigned int* triangles = new unsigned int[nTriangles*3];
HACD::Vec3<HACD::Real> * pointsCH = new HACD::Vec3<HACD::Real>[nPoints];
HACD::Vec3<long> * trianglesCH = new HACD::Vec3<long>[nTriangles];
myHACD.GetCH(c, pointsCH, trianglesCH);
// points
for(size_t v = 0; v < nPoints; v++)
{
vertices[3*v] = pointsCH[v].X();
vertices[3*v+1] = pointsCH[v].Y();
vertices[3*v+2] = pointsCH[v].Z();
}
// triangles
for(size_t f = 0; f < nTriangles; f++)
{
triangles[3*f] = trianglesCH[f].X();
triangles[3*f+1] = trianglesCH[f].Y();
triangles[3*f+2] = trianglesCH[f].Z();
}
delete [] pointsCH;
delete [] trianglesCH;
ConvexResult r(nPoints, vertices, nTriangles, triangles);
convexDecomposition.ConvexDecompResult(r);
}
for (int i=0;i<convexDecomposition.m_convexShapes.size();i++)
{
btVector3 centroid = convexDecomposition.m_convexCentroids[i];
trans.setOrigin(centroid);
btConvexHullShape* convexShape = convexDecomposition.m_convexShapes[i];
compound->addChildShape(trans,convexShape);
btRigidBody* body;
body = localCreateRigidBody( 1.0, trans,convexShape);
}
/* for (int i=0;i<convexDecomposition.m_convexShapes.size();i++)
{
btVector3 centroid = convexDecomposition.m_convexCentroids[i];
trans.setOrigin(centroid);
btConvexHullShape* convexShape = convexDecomposition.m_convexShapes[i];
compound->addChildShape(trans,convexShape);
btRigidBody* body;
body = localCreateRigidBody( 1.0, trans,convexShape);
}*/
#if 1
btScalar mass=10.f;
trans.setOrigin(-convexDecompositionObjectOffset);
btRigidBody* body = localCreateRigidBody( mass, trans,compound);
body->setCollisionFlags(body->getCollisionFlags() | btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK);
convexDecompositionObjectOffset.setZ(6);
trans.setOrigin(-convexDecompositionObjectOffset);
body = localCreateRigidBody( mass, trans,compound);
body->setCollisionFlags(body->getCollisionFlags() | btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK);
convexDecompositionObjectOffset.setZ(-6);
trans.setOrigin(-convexDecompositionObjectOffset);
body = localCreateRigidBody( mass, trans,compound);
body->setCollisionFlags(body->getCollisionFlags() | btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK);
#endif
}
if (outputFile)
fclose(outputFile);
}
#ifdef TEST_SERIALIZATION
//test serializing this
int maxSerializeBufferSize = 1024*1024*5;
btDefaultSerializer* serializer = new btDefaultSerializer(maxSerializeBufferSize);
m_dynamicsWorld->serialize(serializer);
FILE* f2 = fopen("testFile.bullet","wb");
fwrite(serializer->getBufferPointer(),serializer->getCurrentBufferSize(),1,f2);
fclose(f2);
exitPhysics();
//now try again from the loaded file
setupEmptyDynamicsWorld();
#endif //TEST_SERIALIZATION
#endif //NO_OBJ_TO_BULLET
#ifdef TEST_SERIALIZATION
btBulletWorldImporter* fileLoader = new btBulletWorldImporter(m_dynamicsWorld);
//fileLoader->setVerboseMode(true);
fileLoader->loadFile("testFile.bullet");
//fileLoader->loadFile("testFile64Double.bullet");
//fileLoader->loadFile("testFile64Single.bullet");
//fileLoader->loadFile("testFile32Single.bullet");
#endif //TEST_SERIALIZATION
}
void ConvexDecompositionDemo::clientMoveAndDisplay()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
float dt = getDeltaTimeMicroseconds() * 0.000001f;
m_dynamicsWorld->stepSimulation(dt);
//optional but useful: debug drawing
m_dynamicsWorld->debugDrawWorld();
renderme();
glFlush();
swapBuffers();
}
void ConvexDecompositionDemo::displayCallback(void) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
if (m_dynamicsWorld)
m_dynamicsWorld->debugDrawWorld();
renderme();
glFlush();
swapBuffers();
}
void ConvexDecompositionDemo::exitPhysics()
{
//cleanup in the reverse order of creation/initialization
//remove the rigidbodies from the dynamics world and delete them
int i;
for (i=m_dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--)
{
btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i];
btRigidBody* body = btRigidBody::upcast(obj);
if (body && body->getMotionState())
{
delete body->getMotionState();
}
m_dynamicsWorld->removeCollisionObject( obj );
delete obj;
}
//delete collision shapes
for (i=0;i<m_collisionShapes.size();i++)
{
btCollisionShape* shape = m_collisionShapes[i];
delete shape;
}
m_collisionShapes.clear();
for (i=0;i<m_trimeshes.size();i++)
{
btTriangleMesh* mesh = m_trimeshes[i];
delete mesh;
}
m_trimeshes.clear();
//delete dynamics world
delete m_dynamicsWorld;
//delete solver
delete m_solver;
//delete broadphase
delete m_broadphase;
//delete dispatcher
delete m_dispatcher;
delete m_collisionConfiguration;
}
void ConvexDecompositionDemo::clientResetScene()
{
exitPhysics();
initPhysics("file.obj");
}
void ConvexDecompositionDemo::keyboardCallback(unsigned char key, int x, int y)
{
if (key=='S')
{
sEnableSAT= !sEnableSAT;
if (sEnableSAT)
{
printf("SAT enabled after the next restart of the demo\n");
} else
{
printf("SAT disabled after the next restart of the demo\n");
}
} else
{
PlatformDemoApplication::keyboardCallback(key,x,y);
}
}