/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "btBulletDynamicsCommon.h" #include "LinearMath/btIDebugDraw.h" #include "GLDebugDrawer.h" #include "MultiMaterialDemo.h" #include "GL_ShapeDrawer.h" #include "GlutStuff.h" #include "BulletCollision/CollisionShapes/btTriangleShape.h" #include "BulletCollision/CollisionShapes/btTriangleIndexVertexMaterialArray.h" #include "BulletCollision/CollisionShapes/btMultimaterialTriangleMeshShape.h" #include "BulletCollision/CollisionShapes/btMaterial.h" #include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h" // Create a custom material, just because we can class CustomMaterial : public btMaterial { public: int foo1; int foo2; CustomMaterial(){} CustomMaterial(int a, int b) {foo1 = a; foo2 = b;} }; // Storage for the vertex data static btVector3* gVertices = 0; // Storage for the face data static int* gIndices = 0; // Storage for the material data static CustomMaterial* gMaterials = 0; // Storage for the face -> material index data static int* gFaceMaterialIndices = 0; static btBvhTriangleMeshShape* trimeshShape =0; static btRigidBody* staticBody = 0; static float waveheight = 0.f; const float TRIANGLE_SIZE=1.f; ///User can override this material combiner by implementing gContactAddedCallback and setting body0->m_collisionFlags |= btCollisionObject::customMaterialCallback; inline btScalar calculateCombinedFriction(float friction0,float friction1) { btScalar friction = friction0 * friction1; const btScalar MAX_FRICTION = 10.f; if (friction < -MAX_FRICTION) friction = -MAX_FRICTION; if (friction > MAX_FRICTION) friction = MAX_FRICTION; return friction; } inline btScalar calculateCombinedRestitution(float restitution0,float restitution1) { return restitution0 * restitution1; } static bool CustomMaterialCombinerCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap,int partId0,int index0,const btCollisionObjectWrapper* colObj1Wrap,int partId1,int index1) { // Apply material properties if (colObj0Wrap->getCollisionShape()->getShapeType() == TRIANGLE_SHAPE_PROXYTYPE) { const btCollisionShape* parent0 = colObj0Wrap->getCollisionObject()->getCollisionShape(); if(parent0 != 0 && parent0->getShapeType() == MULTIMATERIAL_TRIANGLE_MESH_PROXYTYPE) { btMultimaterialTriangleMeshShape* shape = (btMultimaterialTriangleMeshShape*)parent0; const btMaterial * props = shape->getMaterialProperties(partId0, index0); cp.m_combinedFriction = calculateCombinedFriction(props->m_friction, colObj1Wrap->getCollisionObject()->getFriction()); cp.m_combinedRestitution = props->m_restitution * colObj1Wrap->getCollisionObject()->getRestitution(); } } else if (colObj1Wrap->getCollisionShape()->getShapeType() == TRIANGLE_SHAPE_PROXYTYPE) { const btCollisionShape* parent1 = colObj1Wrap->getCollisionObject()->getCollisionShape(); if(parent1 != 0 && parent1->getShapeType() == MULTIMATERIAL_TRIANGLE_MESH_PROXYTYPE) { btMultimaterialTriangleMeshShape* shape = (btMultimaterialTriangleMeshShape*)parent1; const btMaterial * props = shape->getMaterialProperties(partId1, index1); cp.m_combinedFriction = calculateCombinedFriction(props->m_friction, colObj0Wrap->getCollisionObject()->getFriction()); cp.m_combinedRestitution = props->m_restitution * colObj0Wrap->getCollisionObject()->getRestitution(); } } //this return value is currently ignored, but to be on the safe side: return false if you don't calculate friction return true; } extern ContactAddedCallback gContactAddedCallback; const int NUM_VERTS_X = 20; const int NUM_VERTS_Y = 50; const int totalVerts = NUM_VERTS_X*NUM_VERTS_Y; void MultiMaterialDemo::setVertexPositions(float waveheight, float offset) { int i; int j; for ( i=0;isetCollisionFlags( staticBody->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT); staticBody->setActivationState(DISABLE_DEACTIVATION); } else { staticBody->setCollisionFlags( staticBody->getCollisionFlags() & ~btCollisionObject::CF_KINEMATIC_OBJECT); staticBody->forceActivationState(ACTIVE_TAG); } } DemoApplication::keyboardCallback(key,x,y); } void MultiMaterialDemo::initPhysics() { #define TRISIZE 50.f gContactAddedCallback = CustomMaterialCombinerCallback; // The number of triangles const int totalTriangles = 2*(NUM_VERTS_X-1)*(NUM_VERTS_Y-1); // The number of materials const int totalMaterials = 2; int vertStride = sizeof(btVector3); int indexStride = 3*sizeof(int); // int materialStride = sizeof(CustomMaterial); // int triangleMaterialStride = sizeof(int); gVertices = new btVector3[totalVerts]; gIndices = new int[totalTriangles*3]; gMaterials = new CustomMaterial[totalMaterials]; gFaceMaterialIndices = new int[totalTriangles]; // Explicitly set up the materials. It's a small array so let's do it bit by bit. gMaterials[0].m_friction = 0; gMaterials[0].m_restitution = 0.9; gMaterials[0].foo1 = 5; gMaterials[0].foo2 = 7; gMaterials[1].m_friction = 0.9; gMaterials[1].m_restitution = 0.1; gMaterials[1].foo1 = 53; gMaterials[1].foo2 = 15; int i; // Set up the vertex data setVertexPositions(waveheight,0.f); int index=0; // Set up the face data for ( i=0;imaterial index data for(int a = 0; a < totalTriangles; a++) { // This will give the first half of the faces low friction and high restitution // and the second half of the faces high friction and low restitution if(a > totalTriangles*0.5f) gFaceMaterialIndices[a] = 0; else gFaceMaterialIndices[a] = 1; } // Create the array structure m_indexVertexArrays = new btTriangleIndexVertexMaterialArray( totalTriangles, gIndices, indexStride, totalVerts,(btScalar*) &gVertices[0].x(),vertStride, totalMaterials, (unsigned char *)gMaterials, sizeof(CustomMaterial), gFaceMaterialIndices, sizeof(int)); bool useQuantizedAabbCompression = true; // Create the multimaterial mesh shape trimeshShape = new btMultimaterialTriangleMeshShape((btTriangleIndexVertexMaterialArray*)m_indexVertexArrays,useQuantizedAabbCompression); m_collisionShapes.push_back(trimeshShape); btCollisionShape* groundShape = trimeshShape; m_collisionConfiguration = new btDefaultCollisionConfiguration(); m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration); btVector3 worldMin(-1000,-1000,-1000); btVector3 worldMax(1000,1000,1000); m_broadphase = new btAxisSweep3(worldMin,worldMax); m_solver = new btSequentialImpulseConstraintSolver(); m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration); float mass = 0.f; btTransform startTransform; startTransform.setIdentity(); startTransform.setOrigin(btVector3(0,-2,0)); btCollisionShape* colShape = new btBoxShape(btVector3(0.5f,0.5f,0.5f)); m_collisionShapes.push_back(colShape); { for (int i=0;i<1;i++) { startTransform.setOrigin(btVector3(10,10,-20)); btRigidBody* body = localCreateRigidBody(1, startTransform,colShape); body->setCollisionFlags(body->getCollisionFlags() | btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK); body->setFriction(0.9f); body->setGravity(btVector3(0,-20.f,0)); body->applyCentralImpulse(btVector3(-7.7f,0,0)); } } startTransform.setIdentity(); staticBody = localCreateRigidBody(mass, startTransform,groundShape); staticBody->setCollisionFlags(staticBody->getCollisionFlags() | btCollisionObject::CF_STATIC_OBJECT); //enable custom material callback staticBody->setCollisionFlags(staticBody->getCollisionFlags() | btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK); } void MultiMaterialDemo::clientMoveAndDisplay() { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); float dt = getDeltaTimeMicroseconds() * 0.000001f; if (m_animatedMesh) { static float offset=0.f; offset+=0.01f; // setVertexPositions(waveheight,offset); int i; int j; btVector3 aabbMin(BT_LARGE_FLOAT,BT_LARGE_FLOAT,BT_LARGE_FLOAT); btVector3 aabbMax(-BT_LARGE_FLOAT,-BT_LARGE_FLOAT,-BT_LARGE_FLOAT); for ( i=NUM_VERTS_X/2-3;ipartialRefitTree(aabbMin,aabbMax); //clear all contact points involving mesh proxy. Note: this is a slow/unoptimized operation. m_dynamicsWorld->getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(staticBody->getBroadphaseHandle(),getDynamicsWorld()->getDispatcher()); } m_dynamicsWorld->stepSimulation(dt); //optional but useful: debug drawing m_dynamicsWorld->debugDrawWorld(); renderme(); glFlush(); glutSwapBuffers(); } void MultiMaterialDemo::displayCallback(void) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); renderme(); glFlush(); glutSwapBuffers(); } void MultiMaterialDemo::exitPhysics() { //cleanup in the reverse order of creation/initialization //remove the rigidbodies from the dynamics world and delete them int i; for (i=m_dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--) { btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i]; btRigidBody* body = btRigidBody::upcast(obj); if (body && body->getMotionState()) { delete body->getMotionState(); } m_dynamicsWorld->removeCollisionObject( obj ); delete obj; } //delete collision shapes for (int j=0;j