Add support for Linux memory mapping stream and remove ELF header usage

when checking exploitability rating.

Linux minidumps do not support MD_MEMORY_INFO_LIST_STREAM, meaning the
processor cannot retrieve its memory mappings. However, it has its own
stream, MD_LINUX_MAPS, which contains memory mappings specific to Linux
(it contains the contents of /proc/self/maps). This CL allows the minidump
to gather information from the memory mappings for Linux minidumps.

In addition, exploitability rating for Linux dumps now use memory mappings
instead of checking the ELF headers of binaries. The basis for the change
is that checking the ELF headers requires the minidumps to store the memory
from the ELF headers, while the memory mapping data is already present,
meaning the size of a minidump will be unchanged.

As a result, of removing ELF header analysis, two unit tests have been removed.
Arguably, the cases that those unit tests check do not merit a high
exploitability rating and do not warrant a solid conclusion that was given
earlier.

R=ivanpe@chromium.org

Review URL: https://codereview.chromium.org/1251593007

git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@1476 4c0a9323-5329-0410-9bdc-e9ce6186880e
This commit is contained in:
Liu.andrew.x@gmail.com
2015-07-28 00:53:44 +00:00
parent 4959c18e98
commit 2997f45907
12 changed files with 885 additions and 214 deletions

View File

@@ -36,8 +36,6 @@
#include "processor/exploitability_linux.h"
#include <elf.h>
#include "google_breakpad/common/minidump_exception_linux.h"
#include "google_breakpad/processor/call_stack.h"
#include "google_breakpad/processor/process_state.h"
@@ -111,10 +109,6 @@ ExploitabilityRating ExploitabilityLinux::CheckPlatformExploitability() {
return EXPLOITABILITY_ERR_PROCESSING;
}
if (this->ArchitectureType() == UNSUPPORTED_ARCHITECTURE) {
BPLOG(INFO) << "Unsupported architecture.";
return EXPLOITABILITY_ERR_PROCESSING;
}
// Getting the instruction pointer.
if (!context->GetInstructionPointer(&instruction_ptr)) {
BPLOG(INFO) << "Failed to retrieve instruction pointer.";
@@ -131,151 +125,17 @@ ExploitabilityRating ExploitabilityLinux::CheckPlatformExploitability() {
return EXPLOITABILITY_INTERESTING;
}
LinuxArchitectureType ExploitabilityLinux::ArchitectureType() {
// GetContextCPU() should have already been successfully called before
// calling this method. Thus there should be a raw exception stream for
// the minidump.
MinidumpException *exception = dump_->GetException();
const DumpContext *dump_context =
exception ?
exception->GetContext() : NULL;
if (dump_context == NULL) {
BPLOG(INFO) << "No raw dump context.";
return UNSUPPORTED_ARCHITECTURE;
}
// Check the architecture type.
switch (dump_context->GetContextCPU()) {
case MD_CONTEXT_ARM:
case MD_CONTEXT_X86:
return LINUX_32_BIT;
case MD_CONTEXT_ARM64:
case MD_CONTEXT_AMD64:
return LINUX_64_BIT;
default:
// This should not happen. The four architectures above should be
// the only Linux architectures.
BPLOG(INFO) << "Unsupported architecture.";
return UNSUPPORTED_ARCHITECTURE;
}
}
bool ExploitabilityLinux::InstructionPointerInCode(uint64_t instruction_ptr) {
// Get memory mapping. Most minidumps will not contain a memory
// mapping, so processing will commonly resort to checking modules.
MinidumpMemoryInfoList *mem_info_list = dump_->GetMemoryInfoList();
const MinidumpMemoryInfo *mem_info =
mem_info_list ?
mem_info_list->GetMemoryInfoForAddress(instruction_ptr) : NULL;
// Check if the memory mapping at the instruction pointer is executable.
// If there is no memory mapping, processing will use modules as reference.
if (mem_info != NULL) {
return mem_info->IsExecutable();
}
// If the memory mapping retrieval fails, check the modules
// to see if the instruction pointer is inside a module.
MinidumpModuleList *minidump_module_list = dump_->GetModuleList();
const MinidumpModule *minidump_module =
minidump_module_list ?
minidump_module_list->GetModuleForAddress(instruction_ptr) : NULL;
// If the instruction pointer isn't in a module, return false.
if (minidump_module == NULL) {
return false;
}
// Get ELF header data from the instruction pointer's module.
const uint64_t base_address = minidump_module->base_address();
MinidumpMemoryList *memory_list = dump_->GetMemoryList();
MinidumpMemoryRegion *memory_region =
memory_list ?
memory_list->GetMemoryRegionForAddress(base_address) : NULL;
// The minidump does not have the correct memory region.
// This returns true because even though there is no memory data available,
// the evidence so far suggests that the instruction pointer is not at a
// bad location.
if (memory_region == NULL) {
return true;
}
// Examine ELF headers. Depending on the architecture, the size of the
// ELF headers can differ.
LinuxArchitectureType architecture = this->ArchitectureType();
if (architecture == LINUX_32_BIT) {
// Check if the ELF header is within the memory region and if the
// instruction pointer lies within the ELF header.
if (memory_region->GetSize() < sizeof(Elf32_Ehdr) ||
instruction_ptr < base_address + sizeof(Elf32_Ehdr)) {
return false;
}
// Load 32-bit ELF header.
Elf32_Ehdr header;
this->LoadElfHeader(memory_region, base_address, &header);
// Check if the program header table is within the memory region, and
// validate that the program header entry size is correct.
if (header.e_phentsize != sizeof(Elf32_Phdr) ||
memory_region->GetSize() <
header.e_phoff +
((uint64_t) header.e_phentsize * (uint64_t) header.e_phnum)) {
return false;
}
// Load 32-bit Program Header Table.
scoped_array<Elf32_Phdr> program_headers(new Elf32_Phdr[header.e_phnum]);
this->LoadElfHeaderTable(memory_region,
base_address + header.e_phoff,
header.e_phnum,
program_headers.get());
// Find correct program header that corresponds to the instruction pointer.
for (int i = 0; i < header.e_phnum; i++) {
const Elf32_Phdr& program_header = program_headers[i];
// Check if instruction pointer lies within this program header's region.
if (instruction_ptr >= program_header.p_vaddr &&
instruction_ptr < program_header.p_vaddr + program_header.p_memsz) {
// Return whether this program header region is executable.
return program_header.p_flags & PF_X;
}
}
} else if (architecture == LINUX_64_BIT) {
// Check if the ELF header is within the memory region and if the
// instruction pointer lies within the ELF header.
if (memory_region->GetSize() < sizeof(Elf64_Ehdr) ||
instruction_ptr < base_address + sizeof(Elf64_Ehdr)) {
return false;
}
// Load 64-bit ELF header.
Elf64_Ehdr header;
this->LoadElfHeader(memory_region, base_address, &header);
// Check if the program header table is within the memory region, and
// validate that the program header entry size is correct.
if (header.e_phentsize != sizeof(Elf64_Phdr) ||
memory_region->GetSize() <
header.e_phoff +
((uint64_t) header.e_phentsize * (uint64_t) header.e_phnum)) {
return false;
}
// Load 64-bit Program Header Table.
scoped_array<Elf64_Phdr> program_headers(new Elf64_Phdr[header.e_phnum]);
this->LoadElfHeaderTable(memory_region,
base_address + header.e_phoff,
header.e_phnum,
program_headers.get());
// Find correct program header that corresponds to the instruction pointer.
for (int i = 0; i < header.e_phnum; i++) {
const Elf64_Phdr& program_header = program_headers[i];
// Check if instruction pointer lies within this program header's region.
if (instruction_ptr >= program_header.p_vaddr &&
instruction_ptr < program_header.p_vaddr + program_header.p_memsz) {
// Return whether this program header region is executable.
return program_header.p_flags & PF_X;
}
}
}
// The instruction pointer was not in an area identified by the ELF headers.
return false;
// Get Linux memory mapping from /proc/self/maps. Checking whether the
// region the instruction pointer is in has executable permission can tell
// whether it is in a valid code region. If there is no mapping for the
// instruction pointer, it is indicative that the instruction pointer is
// not within a module, which implies that it is outside a valid area.
MinidumpLinuxMapsList *linux_maps_list = dump_->GetLinuxMapsList();
const MinidumpLinuxMaps *linux_maps =
linux_maps_list ?
linux_maps_list->GetLinuxMapsForAddress(instruction_ptr) : NULL;
return linux_maps ? linux_maps->IsExecutable() : false;
}
bool ExploitabilityLinux::BenignCrashTrigger(const MDRawExceptionStream