boost/libs/variant/doc/introduction.xml
2018-01-12 21:47:58 +01:00

142 lines
5.2 KiB
XML

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE section PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd">
<!--
Copyright 2003, Eric Friedman, Itay Maman.
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
-->
<section id="variant.intro">
<title>Introduction</title>
<using-namespace name="boost"/>
<section id="variant.abstract">
<title>Abstract</title>
<para>The <code>variant</code> class template is a safe, generic, stack-based
discriminated union container, offering a simple solution for manipulating an
object from a heterogeneous set of types in a uniform manner. Whereas
standard containers such as <code>std::vector</code> may be thought of as
"<emphasis role="bold">multi-value, single type</emphasis>,"
<code>variant</code> is "<emphasis role="bold">multi-type,
single value</emphasis>."</para>
<para>Notable features of <code><classname>boost::variant</classname></code>
include:</para>
<itemizedlist>
<listitem>Full value semantics, including adherence to standard
overload resolution rules for conversion operations.</listitem>
<listitem>Compile-time type-safe value visitation via
<code><functionname>boost::apply_visitor</functionname></code>.</listitem>
<listitem>Run-time checked explicit value retrieval via
<code><functionname>boost::get</functionname></code>.</listitem>
<listitem>Support for recursive variant types via both
<code><classname>boost::make_recursive_variant</classname></code> and
<code><classname>boost::recursive_wrapper</classname></code>.</listitem>
<listitem>Efficient implementation -- stack-based when possible (see
<xref linkend="variant.design.never-empty"/> for more details).</listitem>
</itemizedlist>
</section>
<section id="variant.motivation">
<title>Motivation</title>
<section id="variant.motivation.problem">
<title>Problem</title>
<para>Many times, during the development of a C++ program, the
programmer finds himself in need of manipulating several distinct
types in a uniform manner. Indeed, C++ features direct language
support for such types through its <code>union</code>
keyword:</para>
<programlisting>union { int i; double d; } u;
u.d = 3.14;
u.i = 3; // overwrites u.d (OK: u.d is a POD type)</programlisting>
<para>C++'s <code>union</code> construct, however, is nearly
useless in an object-oriented environment. The construct entered
the language primarily as a means for preserving compatibility with
C, which supports only POD (Plain Old Data) types, and so does not
accept types exhibiting non-trivial construction or
destruction:</para>
<programlisting>union {
int i;
std::string s; // illegal: std::string is not a POD type!
} u;</programlisting>
<para>Clearly another approach is required. Typical solutions
feature the dynamic-allocation of objects, which are subsequently
manipulated through a common base type (often a virtual base class
[<link linkend="variant.refs.hen01">Hen01</link>]
or, more dangerously, a <code>void*</code>). Objects of
concrete type may be then retrieved by way of a polymorphic downcast
construct (e.g., <code>dynamic_cast</code>,
<code><functionname>boost::any_cast</functionname></code>, etc.).</para>
<para>However, solutions of this sort are highly error-prone, due
to the following:</para>
<itemizedlist>
<listitem><emphasis>Downcast errors cannot be detected at
compile-time.</emphasis> Thus, incorrect usage of downcast
constructs will lead to bugs detectable only at run-time.</listitem>
<listitem><emphasis>Addition of new concrete types may be
ignored.</emphasis> If a new concrete type is added to the
hierarchy, existing downcast code will continue to work as-is,
wholly ignoring the new type. Consequently, the programmer must
manually locate and modify code at numerous locations, which often
results in run-time errors that are difficult to find.</listitem>
</itemizedlist>
<para>Furthermore, even when properly implemented, these solutions tend
to incur a relatively significant abstraction penalty due to the use of
the heap, virtual function calls, and polymorphic downcasts.</para>
</section>
<section id="variant.motivation.solution">
<title>Solution: A Motivating Example</title>
<para>The <code><classname>boost::variant</classname></code> class template
addresses these issues in a safe, straightforward, and efficient manner. The
following example demonstrates how the class can be used:</para>
<programlisting>#include "boost/variant.hpp"
#include &lt;iostream&gt;
class my_visitor : public <classname>boost::static_visitor</classname>&lt;int&gt;
{
public:
int operator()(int i) const
{
return i;
}
int operator()(const <classname>std::string</classname> &amp; str) const
{
return str.length();
}
};
int main()
{
<classname>boost::variant</classname>&lt; int, std::string &gt; u("hello world");
std::cout &lt;&lt; u; // output: hello world
int result = <functionname>boost::apply_visitor</functionname>( my_visitor(), u );
std::cout &lt;&lt; result; // output: 11 (i.e., length of "hello world")
}
</programlisting>
</section>
</section>
</section>