boost/libs/safe_numerics/example/example93.cpp
2021-10-05 21:37:46 +02:00

308 lines
8.5 KiB
C++

//////////////////////////////////////////////////////////////////
// example93.cpp
//
// Copyright (c) 2015 Robert Ramey
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <iostream>
// include headers to support safe integers
#include <boost/safe_numerics/cpp.hpp>
#include <boost/safe_numerics/exception.hpp>
#include <boost/safe_numerics/safe_integer.hpp>
#include <boost/safe_numerics/safe_integer_range.hpp>
#include <boost/safe_numerics/safe_integer_literal.hpp>
// use same type promotion as used by the pic compiler
// target compiler XC8 supports:
using pic16_promotion = boost::safe_numerics::cpp<
8, // char 8 bits
16, // short 16 bits
16, // int 16 bits
16, // long 16 bits
32 // long long 32 bits
>;
// ***************************
// 1. Specify exception policies so we will generate a
// compile time error whenever an operation MIGHT fail.
// ***************************
// generate runtime errors if operation could fail
using exception_policy = boost::safe_numerics::default_exception_policy;
// generate compile time errors if operation could fail
using trap_policy = boost::safe_numerics::loose_trap_policy;
// ***************************
// 2. Create a macro named literal an integral value
// that can be evaluated at compile time.
#define literal(n) make_safe_literal(n, pic16_promotion, void)
// For min speed of 2 mm / sec (24.8 format)
// sec / step = sec / 2 mm * 2 mm / rotation * rotation / 200 steps
#define C0 literal(5000 << 8)
// For max speed of 400 mm / sec
// sec / step = sec / 400 mm * 2 mm / rotation * rotation / 200 steps
#define C_MIN literal(25 << 8)
static_assert(
C0 < make_safe_literal(0xffffff, pic16_promotion,trap_policy),
"Largest step too long"
);
static_assert(
C_MIN > make_safe_literal(0, pic16_promotion,trap_policy),
"Smallest step must be greater than zero"
);
// ***************************
// 3. Create special ranged types for the motor program
// These wiil guarantee that values are in the expected
// ranges and permit compile time determination of when
// exceptional conditions might occur.
using pic_register_t = boost::safe_numerics::safe<
uint8_t,
pic16_promotion,
trap_policy // use for compiling and running tests
>;
// note: the maximum value of step_t would be:
// 50000 = 500 mm / 2 mm/rotation * 200 steps/rotation.
// But in one expression the value of number of steps * 4 is
// used. To prevent introduction of error, permit this
// type to hold the larger value.
using step_t = boost::safe_numerics::safe_unsigned_range<
0,
200000,
pic16_promotion,
exception_policy
>;
// position
using position_t = boost::safe_numerics::safe_unsigned_range<
0,
50000, // 500 mm / 2 mm/rotation * 200 steps/rotation
pic16_promotion,
exception_policy
>;
// next end of step timer value in format 24.8
// where the .8 is the number of bits in the fractional part.
using ccpr_t = boost::safe_numerics::safe<
uint32_t,
pic16_promotion,
exception_policy
>;
// pulse length in format 24.8
// note: this value is constrainted to be a positive value. But
// we still need to make it a signed type. We get an arithmetic
// error when moving to a negative step number.
using c_t = boost::safe_numerics::safe_unsigned_range<
C_MIN,
C0,
pic16_promotion,
exception_policy
>;
// 32 bit unsigned integer used for temporary purposes
using temp_t = boost::safe_numerics::safe_unsigned_range<
0, 0xffffffff,
pic16_promotion,
exception_policy
>;
// index into phase table
// note: The legal values are 0-3. So why must this be a signed
// type? Turns out that expressions like phase_ix + d
// will convert both operands to unsigned. This in turn will
// create an exception. So leave it signed even though the
// value is greater than zero.
using phase_ix_t = boost::safe_numerics::safe_signed_range<
0,
3,
pic16_promotion,
trap_policy
>;
// settings for control value output
using phase_t = boost::safe_numerics::safe<
uint16_t,
pic16_promotion,
trap_policy
>;
// direction of rotation
using direction_t = boost::safe_numerics::safe_signed_range<
-1,
+1,
pic16_promotion,
trap_policy
>;
// some number of microseconds
using microseconds = boost::safe_numerics::safe<
uint32_t,
pic16_promotion,
trap_policy
>;
// ***************************
// emulate PIC features on the desktop
// filter out special keyword used only by XC8 compiler
#define __interrupt
// filter out XC8 enable/disable global interrupts
#define ei()
#define di()
// emulate PIC special registers
pic_register_t RCON;
pic_register_t INTCON;
pic_register_t CCP1IE;
pic_register_t CCP2IE;
pic_register_t PORTC;
pic_register_t TRISC;
pic_register_t T3CON;
pic_register_t T1CON;
pic_register_t CCPR2H;
pic_register_t CCPR2L;
pic_register_t CCPR1H;
pic_register_t CCPR1L;
pic_register_t CCP1CON;
pic_register_t CCP2CON;
pic_register_t TMR1H;
pic_register_t TMR1L;
// ***************************
// special checked type for bits - values restricted to 0 or 1
using safe_bit_t = boost::safe_numerics::safe_unsigned_range<
0,
1,
pic16_promotion,
trap_policy
>;
// create type used to map PIC bit names to
// correct bit in PIC register
template<typename T, std::int8_t N>
struct bit {
T m_word;
constexpr explicit bit(T & rhs) :
m_word(rhs)
{}
// special functions for assignment of literal
constexpr bit & operator=(decltype(literal(1))){
m_word |= literal(1 << N);
return *this;
}
constexpr bit & operator=(decltype(literal(0))){
m_word &= ~literal(1 << N);
return *this;
}
// operator to convert to 0 or 1
constexpr operator safe_bit_t () const {
return m_word >> literal(N) & literal(1);
}
};
// define bits for T1CON register
struct {
bit<pic_register_t, 7> RD16{T1CON};
bit<pic_register_t, 5> T1CKPS1{T1CON};
bit<pic_register_t, 4> T1CKPS0{T1CON};
bit<pic_register_t, 3> T1OSCEN{T1CON};
bit<pic_register_t, 2> T1SYNC{T1CON};
bit<pic_register_t, 1> TMR1CS{T1CON};
bit<pic_register_t, 0> TMR1ON{T1CON};
} T1CONbits;
// define bits for T1CON register
struct {
bit<pic_register_t, 7> GEI{INTCON};
bit<pic_register_t, 5> PEIE{INTCON};
bit<pic_register_t, 4> TMR0IE{INTCON};
bit<pic_register_t, 3> RBIE{INTCON};
bit<pic_register_t, 2> TMR0IF{INTCON};
bit<pic_register_t, 1> INT0IF{INTCON};
bit<pic_register_t, 0> RBIF{INTCON};
} INTCONbits;
#include "motor3.c"
#include <chrono>
#include <thread>
// round 24.8 format to microseconds
microseconds to_microseconds(ccpr_t t){
return (t + literal(128)) / literal(256);
}
using result_t = uint8_t;
const result_t success = 1;
const result_t fail = 0;
// move motor to the indicated target position in steps
result_t test(position_t new_position){
try {
std::cout << "move motor to " << new_position << '\n';
motor_run(new_position);
std::cout
<< "step #" << ' '
<< "delay(us)(24.8)" << ' '
<< "delay(us)" << ' '
<< "CCPR" << ' '
<< "motor position" << '\n';
while(busy()){
std::this_thread::sleep_for(std::chrono::microseconds(to_microseconds(c)));
c_t last_c = c;
ccpr_t last_ccpr = ccpr;
isr_motor_step();
std::cout << i << ' '
<< last_c << ' '
<< to_microseconds(last_c) << ' '
<< std::hex << last_ccpr << std::dec << ' '
<< motor_position << '\n';
};
}
catch(const std::exception & e){
std::cout << e.what() << '\n';
return fail;
}
return success;
}
int main(){
std::cout << "start test\n";
result_t result = success;
try {
initialize();
// move motor to position 1000
result &= test(literal(9000));
// move to the left before zero position
// fails to compile !
// result &= ! test(-10);
// move motor to position 200
result &= test(literal(200));
// move motor to position 200 again! Should result in no movement.
result &= test(literal(200));
// move motor to position 50000.
result &= test(literal(50000));
// move motor back to position 0.
result &= test(literal(0));
}
catch(...){
std::cout << "test interrupted\n";
return EXIT_FAILURE;
}
std::cout << "end test\n";
return result == success ? EXIT_SUCCESS : EXIT_FAILURE;
}