440 lines
11 KiB
C++
440 lines
11 KiB
C++
/// Copyright (c) 2008-2021 Emil Dotchevski and Reverge Studios, Inc.
|
|
|
|
/// Distributed under the Boost Software License, Version 1.0. (See accompanying
|
|
/// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_QVM_907229FCB3A711DE83C152F855D89593
|
|
#define BOOST_QVM_907229FCB3A711DE83C152F855D89593
|
|
|
|
#include <limits>
|
|
#include <math.h>
|
|
#include <assert.h>
|
|
#include <memory.h>
|
|
#include <stdlib.h>
|
|
|
|
namespace
|
|
test_qvm
|
|
{
|
|
namespace
|
|
detail
|
|
{
|
|
inline
|
|
float
|
|
sin( float a )
|
|
{
|
|
return ::sinf(a);
|
|
}
|
|
|
|
inline
|
|
double
|
|
sin( double a )
|
|
{
|
|
return ::sin(a);
|
|
}
|
|
|
|
inline
|
|
float
|
|
cos( float a )
|
|
{
|
|
return ::cosf(a);
|
|
}
|
|
|
|
inline
|
|
double
|
|
cos( double a )
|
|
{
|
|
return ::cos(a);
|
|
}
|
|
|
|
inline
|
|
float
|
|
abs( float a )
|
|
{
|
|
return ::fabsf(a);
|
|
}
|
|
|
|
inline
|
|
double
|
|
abs( double a )
|
|
{
|
|
return ::fabs(a);
|
|
}
|
|
|
|
inline
|
|
float
|
|
atan2( float a, float b )
|
|
{
|
|
return ::atan2f(a,b);
|
|
}
|
|
|
|
inline
|
|
double
|
|
atan2( double a, double b )
|
|
{
|
|
return ::atan2(a,b);
|
|
}
|
|
|
|
template <class T>
|
|
T
|
|
determinant( T * * a, int n )
|
|
{
|
|
int i,j,j1,j2;
|
|
T det = 0;
|
|
T * * m = 0;
|
|
assert(n>=1);
|
|
if( n==1 )
|
|
det = a[0][0];
|
|
else if( n==2 )
|
|
det = a[0][0] * a[1][1] - a[1][0] * a[0][1];
|
|
else
|
|
{
|
|
det = 0;
|
|
for( j1=0; j1<n; j1++ )
|
|
{
|
|
m = static_cast<T * *>(malloc((n-1)*sizeof(T *)));
|
|
for( i=0; i<n-1; i++ )
|
|
m[i] = static_cast<T *>(malloc((n-1)*sizeof(T)));
|
|
for( i=1; i<n; i++ )
|
|
{
|
|
j2 = 0;
|
|
for( j=0; j<n; j++ )
|
|
{
|
|
if( j==j1 )
|
|
continue;
|
|
m[i-1][j2] = a[i][j];
|
|
j2++;
|
|
}
|
|
}
|
|
det += T(pow(-1.0,1.0+j1+1.0)) * a[0][j1] * determinant(m,n-1);
|
|
for( i=0; i<n-1; i++ )
|
|
free(m[i]);
|
|
free(m);
|
|
}
|
|
}
|
|
return(det);
|
|
}
|
|
|
|
template <class T,int N>
|
|
void
|
|
cofactor( T * * a, T (&b)[N][N] )
|
|
{
|
|
int i,j,ii,jj,i1,j1;
|
|
T det;
|
|
T * * c;
|
|
c = static_cast<T * *>(malloc((N-1)*sizeof(T *)));
|
|
for( i=0; i<N-1; i++ )
|
|
c[i] = static_cast<T *>(malloc((N-1)*sizeof(T)));
|
|
for( j=0; j<N; j++ )
|
|
{
|
|
for( i=0; i<N; i++ )
|
|
{
|
|
i1 = 0;
|
|
for( ii=0; ii<N; ii++ )
|
|
{
|
|
if( ii==i )
|
|
continue;
|
|
j1 = 0;
|
|
for( jj=0; jj<N; jj++ )
|
|
{
|
|
if( jj==j )
|
|
continue;
|
|
c[i1][j1] = a[ii][jj];
|
|
j1++;
|
|
}
|
|
i1++;
|
|
}
|
|
det = determinant(c,N-1);
|
|
b[i][j] = T(pow(-1.0,i+j+2.0)) * det;
|
|
}
|
|
}
|
|
for( i=0; i<N-1; i++ )
|
|
free(c[i]);
|
|
free(c);
|
|
}
|
|
}
|
|
|
|
template <class T,int D>
|
|
T
|
|
determinant( T (&in)[D][D] )
|
|
{
|
|
T * * m = static_cast<T * *>(malloc(D*sizeof(T *)));
|
|
for( int i=0; i!=D; ++i )
|
|
{
|
|
m[i] = static_cast<T *>(malloc(D*sizeof(T)));
|
|
for( int j=0; j!=D; ++j )
|
|
m[i][j]=in[i][j];
|
|
}
|
|
T det=::test_qvm::detail::determinant(m,D);
|
|
for( int i=0; i<D; ++i )
|
|
free(m[i]);
|
|
free(m);
|
|
return det;
|
|
}
|
|
|
|
template <class T,int D>
|
|
void
|
|
inverse( T (&out)[D][D], T (&in)[D][D] )
|
|
{
|
|
T * * m = static_cast<T * *>(malloc(D*sizeof(T *)));
|
|
for( int i=0; i!=D; ++i )
|
|
{
|
|
m[i] = static_cast<T *>(malloc(D*sizeof(T)));
|
|
for( int j=0; j!=D; ++j )
|
|
m[i][j]=in[i][j];
|
|
}
|
|
T det=::test_qvm::detail::determinant(m,D);
|
|
assert(det!=T(0));
|
|
T f=T(1)/det;
|
|
T b[D][D];
|
|
::test_qvm::detail::cofactor(m,b);
|
|
for( int i=0; i<D; ++i )
|
|
free(m[i]);
|
|
free(m);
|
|
for( int i=0; i!=D; ++i )
|
|
for( int j=0; j!=D; ++j )
|
|
out[j][i]=b[i][j]*f;
|
|
}
|
|
|
|
template <class T,int M,int N>
|
|
void
|
|
init_m( T (&r)[M][N], T start=T(0), T step=T(0) )
|
|
{
|
|
for( int i=0; i<M; ++i )
|
|
for( int j=0; j<N; ++j,start+=step )
|
|
r[i][j] = start;
|
|
}
|
|
|
|
template <class T,int D>
|
|
void
|
|
init_v( T (&r)[D], T start=T(0), T step=T(0) )
|
|
{
|
|
for( int i=0; i<D; ++i,start+=step )
|
|
r[i] = start;
|
|
}
|
|
|
|
template <class T,int M,int N>
|
|
void
|
|
zero_mat( T (&r)[M][N] )
|
|
{
|
|
for( int i=0; i<M; ++i )
|
|
for( int j=0; j<N; ++j )
|
|
r[i][j] = T(0);
|
|
}
|
|
|
|
template <class T,int D>
|
|
void
|
|
zero_vec( T (&r)[D] )
|
|
{
|
|
for( int i=0; i<D; ++i )
|
|
r[i] = T(0);
|
|
}
|
|
|
|
template <class T,int D>
|
|
void
|
|
identity( T (&r)[D][D] )
|
|
{
|
|
for( int i=0; i<D; ++i )
|
|
for( int j=0; j<D; ++j )
|
|
r[i][j] = (i==j) ? T(1) : T(0);
|
|
}
|
|
|
|
template <class T,class U,class V,int M,int N>
|
|
void
|
|
add_m( T (&r)[M][N], U (&a)[M][N], V (&b)[M][N] )
|
|
{
|
|
for( int i=0; i<M; ++i )
|
|
for( int j=0; j<N; ++j )
|
|
r[i][j] = a[i][j] + b[i][j];
|
|
}
|
|
|
|
template <class T,class U,class V,int D>
|
|
void
|
|
add_v( T (&r)[D], U (&a)[D], V (&b)[D] )
|
|
{
|
|
for( int i=0; i<D; ++i )
|
|
r[i] = a[i] + b[i];
|
|
}
|
|
|
|
template <class T,class U,class V,int M,int N>
|
|
void
|
|
subtract_m( T (&r)[M][N], U (&a)[M][N], V (&b)[M][N] )
|
|
{
|
|
for( int i=0; i<M; ++i )
|
|
for( int j=0; j<N; ++j )
|
|
r[i][j] = a[i][j] - b[i][j];
|
|
}
|
|
|
|
template <class T,class U,class V,int D>
|
|
void
|
|
subtract_v( T (&r)[D], U (&a)[D], V (&b)[D] )
|
|
{
|
|
for( int i=0; i<D; ++i )
|
|
r[i] = a[i] - b[i];
|
|
}
|
|
|
|
template <class T,int D,class U>
|
|
void
|
|
rotation_x( T (&r)[D][D], U angle )
|
|
{
|
|
identity(r);
|
|
T c=::test_qvm::detail::cos(angle);
|
|
T s=::test_qvm::detail::sin(angle);
|
|
r[1][1]=c;
|
|
r[1][2]=-s;
|
|
r[2][1]=s;
|
|
r[2][2]=c;
|
|
}
|
|
|
|
template <class T,int D,class U>
|
|
void
|
|
rotation_y( T (&r)[D][D], U angle )
|
|
{
|
|
identity(r);
|
|
T c=::test_qvm::detail::cos(angle);
|
|
T s=::test_qvm::detail::sin(angle);
|
|
r[0][0]=c;
|
|
r[0][2]=s;
|
|
r[2][0]=-s;
|
|
r[2][2]=c;
|
|
}
|
|
|
|
template <class T,int D,class U>
|
|
void
|
|
rotation_z( T (&r)[D][D], U angle )
|
|
{
|
|
identity(r);
|
|
T c=::test_qvm::detail::cos(angle);
|
|
T s=::test_qvm::detail::sin(angle);
|
|
r[0][0]=c;
|
|
r[0][1]=-s;
|
|
r[1][0]=s;
|
|
r[1][1]=c;
|
|
}
|
|
|
|
template <class T,int D>
|
|
void
|
|
translation( T (&r)[D][D], T (&t)[D-1] )
|
|
{
|
|
identity(r);
|
|
for( int i=0; i!=D-1; ++i )
|
|
r[i][D-1]=t[i];
|
|
}
|
|
|
|
template <class R,class T,class U,int M,int N,int P>
|
|
void
|
|
multiply_m( R (&r)[M][P], T (&a)[M][N], U (&b)[N][P] )
|
|
{
|
|
for( int i=0; i<M; ++i )
|
|
for( int j=0; j<P; ++j )
|
|
{
|
|
R x=0;
|
|
for( int k=0; k<N; ++k )
|
|
x += R(a[i][k])*R(b[k][j]);
|
|
r[i][j] = x;
|
|
}
|
|
}
|
|
|
|
template <class R,class T,class U,int M,int N>
|
|
void
|
|
multiply_mv( R (&r)[M], T (&a)[M][N], U (&b)[N] )
|
|
{
|
|
for( int i=0; i<M; ++i )
|
|
{
|
|
R x=0;
|
|
for( int k=0; k<N; ++k )
|
|
x += R(a[i][k])*R(b[k]);
|
|
r[i] = x;
|
|
}
|
|
}
|
|
|
|
template <class R,class T,class U,int N,int P>
|
|
void
|
|
multiply_vm( R (&r)[P], T (&a)[N], U (&b)[N][P] )
|
|
{
|
|
for( int j=0; j<P; ++j )
|
|
{
|
|
R x=0;
|
|
for( int k=0; k<N; ++k )
|
|
x += R(a[k])*R(b[k][j]);
|
|
r[j] = x;
|
|
}
|
|
}
|
|
|
|
template <class T,class U,int M,int N,class S>
|
|
void
|
|
scalar_multiply_m( T (&r)[M][N], U (&a)[M][N], S scalar )
|
|
{
|
|
for( int i=0; i<M; ++i )
|
|
for( int j=0; j<N; ++j )
|
|
r[i][j] = a[i][j]*scalar;
|
|
}
|
|
|
|
template <class T,class U,int D,class S>
|
|
void
|
|
scalar_multiply_v( T (&r)[D], U (&a)[D], S scalar )
|
|
{
|
|
for( int i=0; i<D; ++i )
|
|
r[i] = a[i]*scalar;
|
|
}
|
|
|
|
template <class T,int M,int N>
|
|
void
|
|
transpose( T (&r)[M][N], T (&a)[N][M] )
|
|
{
|
|
for( int i=0; i<M; ++i )
|
|
for( int j=0; j<N; ++j )
|
|
r[i][j] = a[j][i];
|
|
}
|
|
|
|
template <class R,class T,class U,int D>
|
|
R
|
|
dot( T (&a)[D], U (&b)[D] )
|
|
{
|
|
R r=R(0);
|
|
for( int i=0; i<D; ++i )
|
|
r+=a[i]*b[i];
|
|
return r;
|
|
}
|
|
|
|
template <class T,int M,int N>
|
|
T
|
|
norm_squared( T (&m)[M][N] )
|
|
{
|
|
T f=T(0);
|
|
for( int i=0; i<M; ++i )
|
|
for( int j=0; j<N; ++j )
|
|
{
|
|
T x=m[i][j];
|
|
f+=x*x;
|
|
}
|
|
return f;
|
|
}
|
|
|
|
template <class T>
|
|
inline
|
|
void
|
|
matrix_perspective_lh( T (&r)[4][4], T fov_y, T aspect_ratio, T zn, T zf )
|
|
{
|
|
T ys=T(1)/::tanf(fov_y/T(2));
|
|
T xs=ys/aspect_ratio;
|
|
zero_mat(r);
|
|
r[0][0] = xs;
|
|
r[1][1] = ys;
|
|
r[2][2] = zf/(zf-zn);
|
|
r[2][3] = -zn*zf/(zf-zn);
|
|
r[3][2] = 1;
|
|
}
|
|
|
|
template <class T>
|
|
inline
|
|
void
|
|
matrix_perspective_rh( T (&r)[4][4], T fov_y, T aspect_ratio, T zn, T zf )
|
|
{
|
|
matrix_perspective_lh(r,fov_y,aspect_ratio,zn,zf);
|
|
r[2][2]=-r[2][2];
|
|
r[3][2]=-r[3][2];
|
|
|
|
} }
|
|
|
|
#endif
|