boost/libs/math/doc/html/math_toolkit/hypergeometric/hypergeometric_refs.html
2021-10-05 21:37:46 +02:00

112 lines
6.5 KiB
HTML

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Hypergeometric References</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../../index.html" title="Math Toolkit 3.0.0">
<link rel="up" href="../hypergeometric.html" title="Hypergeometric Functions">
<link rel="prev" href="hypergeometric_pfq.html" title="Hypergeometric pFq">
<link rel="next" href="../powers.html" title="Basic Functions">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
<td align="center"><a href="../../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="hypergeometric_pfq.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../hypergeometric.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../powers.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="math_toolkit.hypergeometric.hypergeometric_refs"></a><a class="link" href="hypergeometric_refs.html" title="Hypergeometric References">Hypergeometric
References</a>
</h3></div></div></div>
<div class="orderedlist"><ol class="orderedlist" type="1">
<li class="listitem">
Beals, Richard, and Roderick Wong. <span class="emphasis"><em>Special functions: a graduate
text.</em></span> Vol. 126. Cambridge University Press, 2010.
</li>
<li class="listitem">
Pearson, John W., Sheehan Olver, and Mason A. Porter. <span class="emphasis"><em>Numerical
methods for the computation of the confluent and Gauss hypergeometric
functions.</em></span> Numerical Algorithms 74.3 (2017): 821-866.
</li>
<li class="listitem">
Luke, Yudell L. <span class="emphasis"><em>Algorithms for Rational Approximations for
a Confluent Hypergeometric Function II.</em></span> MISSOURI UNIV KANSAS
CITY DEPT OF MATHEMATICS, 1976.
</li>
<li class="listitem">
Derezinski, Jan. <span class="emphasis"><em>Hypergeometric type functions and their symmetries.</em></span>
Annales Henri Poincaré. Vol. 15. No. 8. Springer Basel, 2014.
</li>
<li class="listitem">
Keith E. Muller <span class="emphasis"><em>Computing the confluent hypergeometric function,
M(a, b, x)</em></span>. Numer. Math. 90: 179-196 (2001).
</li>
<li class="listitem">
Carlo Morosi, Livio Pizzocchero. <span class="emphasis"><em>On the expansion of the Kummer
function in terms of incomplete Gamma functions.</em></span> Arch. Inequal.
Appl. 2 (2004), 49-72.
</li>
<li class="listitem">
Jose Luis Lopez, Nico M. Temme. <span class="emphasis"><em>Asymptotics and numerics of
polynomials used in Tricomi and Buchholz expansions of Kummer functions</em></span>.
Numerische Mathematik, August 2010.
</li>
<li class="listitem">
Javier Sesma. <span class="emphasis"><em>The Temme's sum rule for confluent hypergeometric
functions revisited</em></span>. Journal of Computational and Applied
Mathematics 163 (2004) 429-431.
</li>
<li class="listitem">
Javier Segura, Nico M. Temme. <span class="emphasis"><em>Numerically satisfactory solutions
of Kummer recurrence relations</em></span>. Numer. Math. (2008) 111:109-119.
</li>
<li class="listitem">
Alfredo Deano, Javier Segura. <span class="emphasis"><em>Transitory Minimal Solutions
Of Hypergeometric Recursions And Pseudoconvergence of Associated Continued
Fractions</em></span>. Mathematics of Computation, Volume 76, Number 258,
April 2007.
</li>
<li class="listitem">
W. Gautschi. <span class="emphasis"><em>Computational aspects of three-term recurrence
relations</em></span>. SIAM Review 9, no.1 (1967) 24-82.
</li>
<li class="listitem">
W. Gautschi. <span class="emphasis"><em>Anomalous convergence of a continued fraction
for ratios of Kummer functions</em></span>. Math. Comput., 31, no.140
(1977) 994-999.
</li>
<li class="listitem">
British Association for the Advancement of Science: <span class="emphasis"><em>Bessel
functions, Part II, Mathematical Tables vol. X</em></span>. Cambridge
(1952).
</li>
</ol></div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="hypergeometric_pfq.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../hypergeometric.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../powers.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>