340 lines
20 KiB
HTML
340 lines
20 KiB
HTML
<html>
|
||
<head>
|
||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||
<title>Exponential Integral Ei</title>
|
||
<link rel="stylesheet" href="../../math.css" type="text/css">
|
||
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
|
||
<link rel="home" href="../../index.html" title="Math Toolkit 3.0.0">
|
||
<link rel="up" href="../expint.html" title="Exponential Integrals">
|
||
<link rel="prev" href="expint_n.html" title="Exponential Integral En">
|
||
<link rel="next" href="../hypergeometric.html" title="Hypergeometric Functions">
|
||
</head>
|
||
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
|
||
<table cellpadding="2" width="100%"><tr>
|
||
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
|
||
<td align="center"><a href="../../../../../../index.html">Home</a></td>
|
||
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
|
||
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
|
||
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
|
||
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
|
||
</tr></table>
|
||
<hr>
|
||
<div class="spirit-nav">
|
||
<a accesskey="p" href="expint_n.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../expint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../hypergeometric.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
|
||
</div>
|
||
<div class="section">
|
||
<div class="titlepage"><div><div><h3 class="title">
|
||
<a name="math_toolkit.expint.expint_i"></a><a class="link" href="expint_i.html" title="Exponential Integral Ei">Exponential Integral Ei</a>
|
||
</h3></div></div></div>
|
||
<h5>
|
||
<a name="math_toolkit.expint.expint_i.h0"></a>
|
||
<span class="phrase"><a name="math_toolkit.expint.expint_i.synopsis"></a></span><a class="link" href="expint_i.html#math_toolkit.expint.expint_i.synopsis">Synopsis</a>
|
||
</h5>
|
||
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">expint</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
|
||
</pre>
|
||
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>
|
||
|
||
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
|
||
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">expint</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>
|
||
|
||
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">></span>
|
||
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">expint</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&);</span>
|
||
|
||
<span class="special">}}</span> <span class="comment">// namespaces</span>
|
||
</pre>
|
||
<p>
|
||
The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
|
||
type calculation rules</em></span></a>: the return type is <code class="computeroutput"><span class="keyword">double</span></code> if T is an integer type, and T otherwise.
|
||
</p>
|
||
<p>
|
||
The final <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
|
||
be used to control the behaviour of the function: how it handles errors,
|
||
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">policy
|
||
documentation for more details</a>.
|
||
</p>
|
||
<h5>
|
||
<a name="math_toolkit.expint.expint_i.h1"></a>
|
||
<span class="phrase"><a name="math_toolkit.expint.expint_i.description"></a></span><a class="link" href="expint_i.html#math_toolkit.expint.expint_i.description">Description</a>
|
||
</h5>
|
||
<pre class="programlisting"><span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
|
||
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">expint</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>
|
||
|
||
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">></span>
|
||
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">expint</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&);</span>
|
||
</pre>
|
||
<p>
|
||
Returns the <a href="http://mathworld.wolfram.com/ExponentialIntegral.html" target="_top">exponential
|
||
integral</a> of z:
|
||
</p>
|
||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||
<span class="inlinemediaobject"><img src="../../../equations/expint_i_1.svg"></span>
|
||
|
||
</p></blockquote></div>
|
||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||
<span class="inlinemediaobject"><img src="../../../graphs/expint_i.svg" align="middle"></span>
|
||
|
||
</p></blockquote></div>
|
||
<h5>
|
||
<a name="math_toolkit.expint.expint_i.h2"></a>
|
||
<span class="phrase"><a name="math_toolkit.expint.expint_i.accuracy"></a></span><a class="link" href="expint_i.html#math_toolkit.expint.expint_i.accuracy">Accuracy</a>
|
||
</h5>
|
||
<p>
|
||
The following table shows the peak errors (in units of epsilon) found on
|
||
various platforms with various floating point types, along with comparisons
|
||
to Cody's SPECFUN implementation and the <a href="http://www.gnu.org/software/gsl/" target="_top">GSL-1.9</a>
|
||
library. Unless otherwise specified any floating point type that is narrower
|
||
than the one shown will have <a class="link" href="../relative_error.html#math_toolkit.relative_error.zero_error">effectively
|
||
zero error</a>.
|
||
</p>
|
||
<div class="table">
|
||
<a name="math_toolkit.expint.expint_i.table_expint_Ei_"></a><p class="title"><b>Table 8.78. Error rates for expint (Ei)</b></p>
|
||
<div class="table-contents"><table class="table" summary="Error rates for expint (Ei)">
|
||
<colgroup>
|
||
<col>
|
||
<col>
|
||
<col>
|
||
<col>
|
||
<col>
|
||
</colgroup>
|
||
<thead><tr>
|
||
<th>
|
||
</th>
|
||
<th>
|
||
<p>
|
||
GNU C++ version 7.1.0<br> linux<br> long double
|
||
</p>
|
||
</th>
|
||
<th>
|
||
<p>
|
||
GNU C++ version 7.1.0<br> linux<br> double
|
||
</p>
|
||
</th>
|
||
<th>
|
||
<p>
|
||
Sun compiler version 0x5150<br> Sun Solaris<br> long double
|
||
</p>
|
||
</th>
|
||
<th>
|
||
<p>
|
||
Microsoft Visual C++ version 14.1<br> Win32<br> double
|
||
</p>
|
||
</th>
|
||
</tr></thead>
|
||
<tbody>
|
||
<tr>
|
||
<td>
|
||
<p>
|
||
Exponential Integral Ei
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
<span class="blue">Max = 5.05ε (Mean = 0.821ε)</span><br> <br>
|
||
(<span class="emphasis"><em><cmath>:</em></span> Max = 14.1ε (Mean = 2.43ε) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_long_double_expint_Ei___cmath__Exponential_Integral_Ei">And
|
||
other failures.</a>)
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
<span class="blue">Max = 0.994ε (Mean = 0.142ε)</span><br> <br>
|
||
(<span class="emphasis"><em>GSL 2.1:</em></span> Max = 8.96ε (Mean = 0.703ε))
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
<span class="blue">Max = 5.05ε (Mean = 0.835ε)</span>
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
<span class="blue">Max = 1.43ε (Mean = 0.54ε)</span>
|
||
</p>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td>
|
||
<p>
|
||
Exponential Integral Ei: double exponent range
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
<span class="blue">Max = 1.72ε (Mean = 0.593ε)</span><br> <br>
|
||
(<span class="emphasis"><em><cmath>:</em></span> Max = 3.11ε (Mean = 1.13ε))
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
<span class="blue">Max = 0.998ε (Mean = 0.156ε)</span><br> <br>
|
||
(<span class="emphasis"><em>GSL 2.1:</em></span> Max = 1.5ε (Mean = 0.612ε))
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
<span class="blue">Max = 1.72ε (Mean = 0.607ε)</span>
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
<span class="blue">Max = 1.7ε (Mean = 0.66ε)</span>
|
||
</p>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td>
|
||
<p>
|
||
Exponential Integral Ei: long exponent range
|
||
</p>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
<span class="blue">Max = 1.98ε (Mean = 0.595ε)</span><br> <br>
|
||
(<span class="emphasis"><em><cmath>:</em></span> Max = 1.93ε (Mean = 0.855ε))
|
||
</p>
|
||
</td>
|
||
<td>
|
||
</td>
|
||
<td>
|
||
<p>
|
||
<span class="blue">Max = 1.98ε (Mean = 0.575ε)</span>
|
||
</p>
|
||
</td>
|
||
<td>
|
||
</td>
|
||
</tr>
|
||
</tbody>
|
||
</table></div>
|
||
</div>
|
||
<br class="table-break"><p>
|
||
It should be noted that all three libraries tested above offer sub-epsilon
|
||
precision over most of their range.
|
||
</p>
|
||
<p>
|
||
GSL has the greatest difficulty near the positive root of En, while Cody's
|
||
SPECFUN along with this implementation increase their error rates very slightly
|
||
over the range [4,6].
|
||
</p>
|
||
<p>
|
||
The following error plot are based on an exhaustive search of the functions
|
||
domain, MSVC-15.5 at <code class="computeroutput"><span class="keyword">double</span></code>
|
||
precision, and GCC-7.1/Ubuntu for <code class="computeroutput"><span class="keyword">long</span>
|
||
<span class="keyword">double</span></code> and <code class="computeroutput"><span class="identifier">__float128</span></code>.
|
||
</p>
|
||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||
<span class="inlinemediaobject"><img src="../../../graphs/exponential_integral_ei__double.svg" align="middle"></span>
|
||
|
||
</p></blockquote></div>
|
||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||
<span class="inlinemediaobject"><img src="../../../graphs/exponential_integral_ei__80_bit_long_double.svg" align="middle"></span>
|
||
|
||
</p></blockquote></div>
|
||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||
<span class="inlinemediaobject"><img src="../../../graphs/exponential_integral_ei____float128.svg" align="middle"></span>
|
||
|
||
</p></blockquote></div>
|
||
<h5>
|
||
<a name="math_toolkit.expint.expint_i.h3"></a>
|
||
<span class="phrase"><a name="math_toolkit.expint.expint_i.testing"></a></span><a class="link" href="expint_i.html#math_toolkit.expint.expint_i.testing">Testing</a>
|
||
</h5>
|
||
<p>
|
||
The tests for these functions come in two parts: basic sanity checks use
|
||
spot values calculated using <a href="http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=ExpIntegralEi" target="_top">Mathworld's
|
||
online evaluator</a>, while accuracy checks use high-precision test values
|
||
calculated at 1000-bit precision with <a href="http://shoup.net/ntl/doc/RR.txt" target="_top">NTL::RR</a>
|
||
and this implementation. Note that the generic and type-specific versions
|
||
of these functions use differing implementations internally, so this gives
|
||
us reasonably independent test data. Using our test data to test other "known
|
||
good" implementations also provides an additional sanity check.
|
||
</p>
|
||
<h5>
|
||
<a name="math_toolkit.expint.expint_i.h4"></a>
|
||
<span class="phrase"><a name="math_toolkit.expint.expint_i.implementation"></a></span><a class="link" href="expint_i.html#math_toolkit.expint.expint_i.implementation">Implementation</a>
|
||
</h5>
|
||
<p>
|
||
For x < 0 this function just calls <a class="link" href="expint_n.html" title="Exponential Integral En">zeta</a>(1,
|
||
-x): which in turn is implemented in terms of rational approximations when
|
||
the type of x has 113 or fewer bits of precision.
|
||
</p>
|
||
<p>
|
||
For x > 0 the generic version is implemented using the infinite series:
|
||
</p>
|
||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||
<span class="inlinemediaobject"><img src="../../../equations/expint_i_2.svg"></span>
|
||
|
||
</p></blockquote></div>
|
||
<p>
|
||
However, when the precision of the argument type is known at compile time
|
||
and is 113 bits or less, then rational approximations <a class="link" href="../sf_implementation.html#math_toolkit.sf_implementation.rational_approximations_used">devised
|
||
by JM</a> are used.
|
||
</p>
|
||
<p>
|
||
For 0 < z < 6 a root-preserving approximation of the form:
|
||
</p>
|
||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||
<span class="inlinemediaobject"><img src="../../../equations/expint_i_3.svg"></span>
|
||
|
||
</p></blockquote></div>
|
||
<p>
|
||
is used, where z<sub>0</sub> is the positive root of the function, and R(z/3 - 1) is
|
||
a minimax rational approximation rescaled so that it is evaluated over [-1,1].
|
||
Note that while the rational approximation over [0,6] converges rapidly to
|
||
the minimax solution it is rather ill-conditioned in practice. Cody and Thacher
|
||
<a href="#ftn.math_toolkit.expint.expint_i.f0" class="footnote" name="math_toolkit.expint.expint_i.f0"><sup class="footnote">[11]</sup></a> experienced the same issue and converted the polynomials into
|
||
Chebeshev form to ensure stable computation. By experiment we found that
|
||
the polynomials are just as stable in polynomial as Chebyshev form, <span class="emphasis"><em>provided</em></span>
|
||
they are computed over the interval [-1,1].
|
||
</p>
|
||
<p>
|
||
Over the a series of intervals <span class="emphasis"><em>[a, b]</em></span> and <span class="emphasis"><em>[b,
|
||
INF]</em></span> the rational approximation takes the form:
|
||
</p>
|
||
<div class="blockquote"><blockquote class="blockquote"><p>
|
||
<span class="inlinemediaobject"><img src="../../../equations/expint_i_4.svg"></span>
|
||
|
||
</p></blockquote></div>
|
||
<p>
|
||
where <span class="emphasis"><em>c</em></span> is a constant, and <span class="emphasis"><em>R(t)</em></span>
|
||
is a minimax solution optimised for low absolute error compared to <span class="emphasis"><em>c</em></span>.
|
||
Variable <span class="emphasis"><em>t</em></span> is <code class="computeroutput"><span class="number">1</span><span class="special">/</span><span class="identifier">z</span></code> when
|
||
the range in infinite and <code class="computeroutput"><span class="number">2</span><span class="identifier">z</span><span class="special">/(</span><span class="identifier">b</span><span class="special">-</span><span class="identifier">a</span><span class="special">)</span> <span class="special">-</span>
|
||
<span class="special">(</span><span class="number">2</span><span class="identifier">a</span><span class="special">/(</span><span class="identifier">b</span><span class="special">-</span><span class="identifier">a</span><span class="special">)</span>
|
||
<span class="special">+</span> <span class="number">1</span><span class="special">)</span></code> otherwise: this has the effect of scaling
|
||
z to the interval [-1,1]. As before rational approximations over arbitrary
|
||
intervals were found to be ill-conditioned: Cody and Thacher solved this
|
||
issue by converting the polynomials to their J-Fraction equivalent. However,
|
||
as long as the interval of evaluation was [-1,1] and the number of terms
|
||
carefully chosen, it was found that the polynomials <span class="emphasis"><em>could</em></span>
|
||
be evaluated to suitable precision: error rates are typically 2 to 3 epsilon
|
||
which is comparable to the error rate that Cody and Thacher achieved using
|
||
J-Fractions, but marginally more efficient given that fewer divisions are
|
||
involved.
|
||
</p>
|
||
<div class="footnotes">
|
||
<br><hr style="width:100; text-align:left;margin-left: 0">
|
||
<div id="ftn.math_toolkit.expint.expint_i.f0" class="footnote"><p><a href="#math_toolkit.expint.expint_i.f0" class="para"><sup class="para">[11] </sup></a>
|
||
W. J. Cody and H. C. Thacher, Jr., Rational Chebyshev approximations for
|
||
the exponential integral E<sub>1</sub>(x), Math. Comp. 22 (1968), 641-649, and W.
|
||
J. Cody and H. C. Thacher, Jr., Chebyshev approximations for the exponential
|
||
integral Ei(x), Math. Comp. 23 (1969), 289-303.
|
||
</p></div>
|
||
</div>
|
||
</div>
|
||
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
|
||
<td align="left"></td>
|
||
<td align="right"><div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
|
||
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
|
||
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
|
||
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
|
||
Walker and Xiaogang Zhang<p>
|
||
Distributed under the Boost Software License, Version 1.0. (See accompanying
|
||
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
|
||
</p>
|
||
</div></td>
|
||
</tr></table>
|
||
<hr>
|
||
<div class="spirit-nav">
|
||
<a accesskey="p" href="expint_n.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../expint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../hypergeometric.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
|
||
</div>
|
||
</body>
|
||
</html>
|