2021-10-05 21:37:46 +02:00

735 lines
52 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Non-Member Properties</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../../index.html" title="Math Toolkit 3.0.0">
<link rel="up" href="../dist_ref.html" title="Statistical Distributions Reference">
<link rel="prev" href="../dist_ref.html" title="Statistical Distributions Reference">
<link rel="next" href="dists.html" title="Distributions">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
<td align="center"><a href="../../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../dist_ref.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../dist_ref.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="dists.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="math_toolkit.dist_ref.nmp"></a><a class="link" href="nmp.html" title="Non-Member Properties">Non-Member Properties</a>
</h3></div></div></div>
<p>
Properties that are common to all distributions are accessed via non-member
getter functions: non-membership allows more of these functions to be added
over time, as the need arises. Unfortunately the literature uses many different
and confusing names to refer to a rather small number of actual concepts;
refer to the <a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.concept_index">concept
index</a> to find the property you want by the name you are most familiar
with. Or use the <a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.function_index">function
index</a> to go straight to the function you want if you already know
its name.
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h0"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.function_index"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.function_index">Function
Index</a>
</h5>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.cdf">Cumulative Distribution
Function</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.ccdf">Complement of the Cumulative
Distribution Function</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.chf">Cumulative Hazard Function</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.hazard">Hazard Function</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.kurtosis">kurtosis</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.kurtosis_excess">kurtosis_excess</a>
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.mean">mean</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.median">median</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.mode">mode</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.pdf">Probability Density Function</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.range">range</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.quantile">Quantile</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.quantile_c">Quantile from the
complement of the probability</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.skewness">skewness</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.sd">standard deviation</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.support">support</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.variance">variance</a>.
</li>
<li class="listitem">
entropy.
</li>
</ul></div>
<h5>
<a name="math_toolkit.dist_ref.nmp.h1"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.concept_index"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.concept_index">Conceptual
Index</a>
</h5>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.ccdf">Complement of the Cumulative
Distribution Function</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.cdf">Cumulative Distribution
Function</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.chf">Cumulative Hazard Function</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.cdf_inv">Inverse Cumulative
Distribution Function</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.survival_inv">Inverse Survival
Function</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.hazard">Hazard Function</a>
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.lower_critical">Lower Critical
Value</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.kurtosis">kurtosis</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.kurtosis_excess">kurtosis_excess</a>
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.mean">mean</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.median">median</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.mode">mode</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.cdfPQ">P</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.percent">Percent Point Function</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.pdf">Probability Density Function</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.pmf">Probability Mass Function</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.range">range</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.cdfPQ">Q</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.quantile">Quantile</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.quantile_c">Quantile from the
complement of the probability</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.skewness">skewness</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.sd">standard deviation</a>
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.survival">Survival Function</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.support">support</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.upper_critical">Upper Critical
Value</a>.
</li>
<li class="listitem">
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.variance">variance</a>.
</li>
<li class="listitem">
entropy
</li>
</ul></div>
<h5>
<a name="math_toolkit.dist_ref.nmp.h2"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.cdf"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.cdf">Cumulative
Distribution Function</a>
</h5>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">RealType</span> <span class="identifier">cdf</span><span class="special">(</span><span class="keyword">const</span> <span class="emphasis"><em>Distribution-Type</em></span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">,</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;&amp;</span> <span class="identifier">dist</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">RealType</span><span class="special">&amp;</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
The <a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.cdf">Cumulative Distribution
Function</a> is the probability that the variable takes a value less than
or equal to x. It is equivalent to the integral from -infinity to x of the
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.pdf">Probability Density Function</a>.
</p>
<p>
This function may return a <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
if the random variable is outside the defined range for the distribution.
</p>
<p>
For example, the following graph shows the cdf for the normal distribution:
</p>
<p>
<span class="inlinemediaobject"><img src="../../../graphs/cdf.png"></span>
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h3"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.ccdf"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.ccdf">Complement
of the Cumulative Distribution Function</a>
</h5>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Distribution</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">&gt;</span>
<span class="identifier">RealType</span> <span class="identifier">cdf</span><span class="special">(</span><span class="keyword">const</span> <span class="emphasis"><em>Unspecified-Complement-Type</em></span><span class="special">&lt;</span><span class="identifier">Distribution</span><span class="special">,</span> <span class="identifier">RealType</span><span class="special">&gt;&amp;</span> <span class="identifier">comp</span><span class="special">);</span>
</pre>
<p>
The complement of the <a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.cdf">Cumulative
Distribution Function</a> is the probability that the variable takes a
value greater than x. It is equivalent to the integral from x to infinity
of the <a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.pdf">Probability Density
Function</a>, or 1 minus the <a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.cdf">Cumulative
Distribution Function</a> of x.
</p>
<p>
This is also known as the survival function.
</p>
<p>
This function may return a <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
if the random variable is outside the defined range for the distribution.
</p>
<p>
In this library, it is obtained by wrapping the arguments to the <code class="computeroutput"><span class="identifier">cdf</span></code> function in a call to <code class="computeroutput"><span class="identifier">complement</span></code>, for example:
</p>
<pre class="programlisting"><span class="comment">// standard normal distribution object:</span>
<span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">normal</span> <span class="identifier">norm</span><span class="special">;</span>
<span class="comment">// print survival function for x=2.0:</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">norm</span><span class="special">,</span> <span class="number">2.0</span><span class="special">))</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
For example, the following graph shows the __complement of the cdf for the
normal distribution:
</p>
<p>
<span class="inlinemediaobject"><img src="../../../graphs/survival.png"></span>
</p>
<p>
See <a class="link" href="../stat_tut/overview/complements.html#why_complements">why complements?</a> for why the complement
is useful and when it should be used.
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h4"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.hazard"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.hazard">Hazard
Function</a>
</h5>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">RealType</span> <span class="identifier">hazard</span><span class="special">(</span><span class="keyword">const</span> <span class="emphasis"><em>Distribution-Type</em></span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">,</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;&amp;</span> <span class="identifier">dist</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">RealType</span><span class="special">&amp;</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
Returns the <a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.hazard">Hazard Function</a>
of <span class="emphasis"><em>x</em></span> and distribution <span class="emphasis"><em>dist</em></span>.
</p>
<p>
This function may return a <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
if the random variable is outside the defined range for the distribution.
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/hazard.svg"></span>
</p></blockquote></div>
<div class="caution"><table border="0" summary="Caution">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Caution]" src="../../../../../../doc/src/images/caution.png"></td>
<th align="left">Caution</th>
</tr>
<tr><td align="left" valign="top"><p>
Some authors refer to this as the conditional failure density function
rather than the hazard function.
</p></td></tr>
</table></div>
<h5>
<a name="math_toolkit.dist_ref.nmp.h5"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.chf"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.chf">Cumulative
Hazard Function</a>
</h5>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">RealType</span> <span class="identifier">chf</span><span class="special">(</span><span class="keyword">const</span> <span class="emphasis"><em>Distribution-Type</em></span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">,</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;&amp;</span> <span class="identifier">dist</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">RealType</span><span class="special">&amp;</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
Returns the <a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.chf">Cumulative Hazard
Function</a> of <span class="emphasis"><em>x</em></span> and distribution <span class="emphasis"><em>dist</em></span>.
</p>
<p>
This function may return a <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
if the random variable is outside the defined range for the distribution.
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/chf.svg"></span>
</p></blockquote></div>
<div class="caution"><table border="0" summary="Caution">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Caution]" src="../../../../../../doc/src/images/caution.png"></td>
<th align="left">Caution</th>
</tr>
<tr><td align="left" valign="top"><p>
Some authors refer to this as simply the "Hazard Function".
</p></td></tr>
</table></div>
<h5>
<a name="math_toolkit.dist_ref.nmp.h6"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.mean"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.mean">mean</a>
</h5>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">RealType</span> <span class="identifier">mean</span><span class="special">(</span><span class="keyword">const</span> <span class="emphasis"><em>Distribution-Type</em></span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">,</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;&amp;</span> <span class="identifier">dist</span><span class="special">);</span>
</pre>
<p>
Returns the mean of the distribution <span class="emphasis"><em>dist</em></span>.
</p>
<p>
This function may return a <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
if the distribution does not have a defined mean (for example the Cauchy
distribution).
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h7"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.median"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.median">median</a>
</h5>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">RealType</span> <span class="identifier">median</span><span class="special">(</span><span class="keyword">const</span> <span class="emphasis"><em>Distribution-Type</em></span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">,</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;&amp;</span> <span class="identifier">dist</span><span class="special">);</span>
</pre>
<p>
Returns the median of the distribution <span class="emphasis"><em>dist</em></span>.
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h8"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.mode"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.mode">mode</a>
</h5>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">RealType</span> <span class="identifier">mode</span><span class="special">(</span><span class="keyword">const</span> <span class="emphasis"><em>Distribution-Type</em></span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">,</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;&amp;</span> <span class="identifier">dist</span><span class="special">);</span>
</pre>
<p>
Returns the mode of the distribution <span class="emphasis"><em>dist</em></span>.
</p>
<p>
This function may return a <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
if the distribution does not have a defined mode.
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h9"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.pdf"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.pdf">Probability
Density Function</a>
</h5>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">RealType</span> <span class="identifier">pdf</span><span class="special">(</span><span class="keyword">const</span> <span class="emphasis"><em>Distribution-Type</em></span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">,</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;&amp;</span> <span class="identifier">dist</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">RealType</span><span class="special">&amp;</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
For a continuous function, the probability density function (pdf) returns
the probability that the variate has the value x. Since for continuous distributions
the probability at a single point is actually zero, the probability is better
expressed as the integral of the pdf between two points: see the <a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.cdf">Cumulative
Distribution Function</a>.
</p>
<p>
For a discrete distribution, the pdf is the probability that the variate
takes the value x.
</p>
<p>
This function may return a <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
if the random variable is outside the defined range for the distribution.
</p>
<p>
For example, for a standard normal distribution the pdf looks like this:
</p>
<p>
<span class="inlinemediaobject"><img src="../../../graphs/pdf.png"></span>
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h10"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.range"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.range">Range</a>
</h5>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">,</span> <span class="identifier">RealType</span><span class="special">&gt;</span> <span class="identifier">range</span><span class="special">(</span><span class="keyword">const</span> <span class="emphasis"><em>Distribution-Type</em></span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">,</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;&amp;</span> <span class="identifier">dist</span><span class="special">);</span>
</pre>
<p>
Returns the valid range of the random variable over distribution <span class="emphasis"><em>dist</em></span>.
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h11"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.quantile"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.quantile">Quantile</a>
</h5>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">RealType</span> <span class="identifier">quantile</span><span class="special">(</span><span class="keyword">const</span> <span class="emphasis"><em>Distribution-Type</em></span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">,</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;&amp;</span> <span class="identifier">dist</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">RealType</span><span class="special">&amp;</span> <span class="identifier">p</span><span class="special">);</span>
</pre>
<p>
The quantile is best viewed as the inverse of the <a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.cdf">Cumulative
Distribution Function</a>, it returns a value <span class="emphasis"><em>x</em></span> such
that <code class="computeroutput"><span class="identifier">cdf</span><span class="special">(</span><span class="identifier">dist</span><span class="special">,</span> <span class="identifier">x</span><span class="special">)</span> <span class="special">==</span>
<span class="identifier">p</span></code>.
</p>
<p>
This is also known as the <span class="emphasis"><em>percent point function</em></span>, or
<span class="emphasis"><em>percentile</em></span>, or <span class="emphasis"><em>fractile</em></span>, it is
also the same as calculating the <span class="emphasis"><em>lower critical value</em></span>
of a distribution.
</p>
<p>
This function returns a <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
if the probability lies outside [0,1]. The function may return an <a class="link" href="../error_handling.html#math_toolkit.error_handling.overflow_error">overflow_error</a>
if there is no finite value that has the specified probability.
</p>
<p>
The following graph shows the quantile function for a standard normal distribution:
</p>
<p>
<span class="inlinemediaobject"><img src="../../../graphs/quantile.png"></span>
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h12"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.quantile_c"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.quantile_c">Quantile
from the complement of the probability.</a>
</h5>
<p>
See also <a class="link" href="../stat_tut/overview/complements.html" title="Complements are supported too - and when to use them">complements</a>.
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Distribution</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">&gt;</span>
<span class="identifier">RealType</span> <span class="identifier">quantile</span><span class="special">(</span><span class="keyword">const</span> <span class="emphasis"><em>Unspecified-Complement-Type</em></span><span class="special">&lt;</span><span class="identifier">Distribution</span><span class="special">,</span> <span class="identifier">RealType</span><span class="special">&gt;&amp;</span> <span class="identifier">comp</span><span class="special">);</span>
</pre>
<p>
This is the inverse of the <a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.ccdf">Complement
of the Cumulative Distribution Function</a>. It is calculated by wrapping
the arguments in a call to the quantile function in a call to <span class="emphasis"><em>complement</em></span>.
For example:
</p>
<pre class="programlisting"><span class="comment">// define a standard normal distribution:</span>
<span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">normal</span> <span class="identifier">norm</span><span class="special">;</span>
<span class="comment">// print the value of x for which the complement</span>
<span class="comment">// of the probability is 0.05:</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">quantile</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">norm</span><span class="special">,</span> <span class="number">0.05</span><span class="special">))</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
The function computes a value <span class="emphasis"><em>x</em></span> such that <code class="computeroutput"><span class="identifier">cdf</span><span class="special">(</span><span class="identifier">complement</span><span class="special">(</span><span class="identifier">dist</span><span class="special">,</span>
<span class="identifier">x</span><span class="special">))</span> <span class="special">==</span> <span class="identifier">q</span></code> where
<span class="emphasis"><em>q</em></span> is complement of the probability.
</p>
<p>
<a class="link" href="../stat_tut/overview/complements.html#why_complements">Why complements?</a>
</p>
<p>
This function is also called the inverse survival function, and is the same
as calculating the <span class="emphasis"><em>upper critical value</em></span> of a distribution.
</p>
<p>
This function returns a <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
if the probability lies outside [0,1]. The function may return an <a class="link" href="../error_handling.html#math_toolkit.error_handling.overflow_error">overflow_error</a>
if there is no finite value that has the specified probability.
</p>
<p>
The following graph show the inverse survival function for the normal distribution:
</p>
<p>
<span class="inlinemediaobject"><img src="../../../graphs/survival_inv.png"></span>
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h13"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.sd"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.sd">Standard
Deviation</a>
</h5>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">RealType</span> <span class="identifier">standard_deviation</span><span class="special">(</span><span class="keyword">const</span> <span class="emphasis"><em>Distribution-Type</em></span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">,</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;&amp;</span> <span class="identifier">dist</span><span class="special">);</span>
</pre>
<p>
Returns the standard deviation of distribution <span class="emphasis"><em>dist</em></span>.
</p>
<p>
This function may return a <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
if the distribution does not have a defined standard deviation.
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h14"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.support"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.support">support</a>
</h5>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">,</span> <span class="identifier">RealType</span><span class="special">&gt;</span> <span class="identifier">support</span><span class="special">(</span><span class="keyword">const</span> <span class="emphasis"><em>Distribution-Type</em></span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">,</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;&amp;</span> <span class="identifier">dist</span><span class="special">);</span>
</pre>
<p>
Returns the supported range of random variable over the distribution <span class="emphasis"><em>dist</em></span>.
</p>
<p>
The distribution is said to be 'supported' over a range that is <a href="http://en.wikipedia.org/wiki/Probability_distribution" target="_top">"the
smallest closed set whose complement has probability zero"</a>.
Non-mathematicians might say it means the 'interesting' smallest range of
random variate x that has the cdf going from zero to unity. Outside are uninteresting
zones where the pdf is zero, and the cdf zero or unity.
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h15"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.variance"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.variance">Variance</a>
</h5>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">RealType</span> <span class="identifier">variance</span><span class="special">(</span><span class="keyword">const</span> <span class="emphasis"><em>Distribution-Type</em></span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">,</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;&amp;</span> <span class="identifier">dist</span><span class="special">);</span>
</pre>
<p>
Returns the variance of the distribution <span class="emphasis"><em>dist</em></span>.
</p>
<p>
This function may return a <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
if the distribution does not have a defined variance.
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h16"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.skewness"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.skewness">Skewness</a>
</h5>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">RealType</span> <span class="identifier">skewness</span><span class="special">(</span><span class="keyword">const</span> <span class="emphasis"><em>Distribution-Type</em></span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">,</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;&amp;</span> <span class="identifier">dist</span><span class="special">);</span>
</pre>
<p>
Returns the skewness of the distribution <span class="emphasis"><em>dist</em></span>.
</p>
<p>
This function may return a <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
if the distribution does not have a defined skewness.
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h17"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.kurtosis"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.kurtosis">Kurtosis</a>
</h5>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">RealType</span> <span class="identifier">kurtosis</span><span class="special">(</span><span class="keyword">const</span> <span class="emphasis"><em>Distribution-Type</em></span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">,</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;&amp;</span> <span class="identifier">dist</span><span class="special">);</span>
</pre>
<p>
Returns the 'proper' kurtosis (normalized fourth moment) of the distribution
<span class="emphasis"><em>dist</em></span>.
</p>
<p>
kurtosis = β<sub>2</sub>= μ<sub>4</sub> / μ<sub>2</sub><sup>2</sup>
</p>
<p>
Where μ<sub>i</sub> is the i'th central moment of the distribution, and in particular
μ<sub>2</sub> is the variance of the distribution.
</p>
<p>
The kurtosis is a measure of the "peakedness" of a distribution.
</p>
<p>
Note that the literature definition of kurtosis is confusing. The definition
used here is that used by for example <a href="http://mathworld.wolfram.com/Kurtosis.html" target="_top">Wolfram
MathWorld</a> (that includes a table of formulae for kurtosis excess
for various distributions) but NOT the definition of <a href="http://en.wikipedia.org/wiki/Kurtosis" target="_top">kurtosis
used by Wikipedia</a> which treats "kurtosis" and "kurtosis
excess" as the same quantity.
</p>
<pre class="programlisting"><span class="identifier">kurtosis_excess</span> <span class="special">=</span> <span class="char">'proper'</span> <span class="identifier">kurtosis</span> <span class="special">-</span> <span class="number">3</span>
</pre>
<p>
This subtraction of 3 is convenient so that the <span class="emphasis"><em>kurtosis excess</em></span>
of a normal distribution is zero.
</p>
<p>
This function may return a <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
if the distribution does not have a defined kurtosis.
</p>
<p>
'Proper' kurtosis can have a value from zero to + infinity.
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h18"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.kurtosis_excess"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.kurtosis_excess">Kurtosis
excess</a>
</h5>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">RealType</span><span class="special">,</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">RealType</span> <span class="identifier">kurtosis_excess</span><span class="special">(</span><span class="keyword">const</span> <span class="emphasis"><em>Distribution-Type</em></span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">,</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;&amp;</span> <span class="identifier">dist</span><span class="special">);</span>
</pre>
<p>
Returns the kurtosis excess of the distribution <span class="emphasis"><em>dist</em></span>.
</p>
<p>
kurtosis excess = γ<sub>2</sub>= μ<sub>4</sub> / μ<sub>2</sub><sup>2</sup>- 3 = kurtosis - 3
</p>
<p>
Where μ<sub>i</sub> is the i'th central moment of the distribution, and in particular
μ<sub>2</sub> is the variance of the distribution.
</p>
<p>
The kurtosis excess is a measure of the "peakedness" of a distribution,
and is more widely used than the "kurtosis proper". It is defined
so that the kurtosis excess of a normal distribution is zero.
</p>
<p>
This function may return a <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
if the distribution does not have a defined kurtosis excess.
</p>
<p>
Kurtosis excess can have a value from -2 to + infinity.
</p>
<pre class="programlisting"><span class="identifier">kurtosis</span> <span class="special">=</span> <span class="identifier">kurtosis_excess</span> <span class="special">+</span><span class="number">3</span><span class="special">;</span>
</pre>
<p>
The kurtosis excess of a normal distribution is zero.
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h19"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.cdfPQ"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.cdfPQ">P
and Q</a>
</h5>
<p>
The terms P and Q are sometimes used to refer to the <a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.cdf">Cumulative
Distribution Function</a> and its <a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.ccdf">complement</a>
respectively. Lowercase p and q are sometimes used to refer to the values
returned by these functions.
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h20"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.percent"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.percent">Percent
Point Function or Percentile</a>
</h5>
<p>
The percent point function, also known as the percentile, is the same as
the <a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.quantile">Quantile</a>.
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h21"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.cdf_inv"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.cdf_inv">Inverse
CDF Function.</a>
</h5>
<p>
The inverse of the cumulative distribution function, is the same as the
<a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.quantile">Quantile</a>.
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h22"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.survival_inv"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.survival_inv">Inverse
Survival Function.</a>
</h5>
<p>
The inverse of the survival function, is the same as computing the <a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.quantile_c">quantile from the complement
of the probability</a>.
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h23"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.pmf"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.pmf">Probability
Mass Function</a>
</h5>
<p>
The Probability Mass Function is the same as the <a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.pdf">Probability
Density Function</a>.
</p>
<p>
The term Mass Function is usually applied to discrete distributions, while
the term <a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.pdf">Probability Density
Function</a> applies to continuous distributions.
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h24"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.lower_critical"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.lower_critical">Lower
Critical Value.</a>
</h5>
<p>
The lower critical value calculates the value of the random variable given
the area under the left tail of the distribution. It is equivalent to calculating
the <a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.quantile">Quantile</a>.
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h25"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.upper_critical"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.upper_critical">Upper
Critical Value.</a>
</h5>
<p>
The upper critical value calculates the value of the random variable given
the area under the right tail of the distribution. It is equivalent to calculating
the <a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.quantile_c">quantile from the
complement of the probability</a>.
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h26"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.survival"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.survival">Survival
Function</a>
</h5>
<p>
Refer to the <a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.ccdf">Complement of
the Cumulative Distribution Function</a>.
</p>
<h5>
<a name="math_toolkit.dist_ref.nmp.h27"></a>
<span class="phrase"><a name="math_toolkit.dist_ref.nmp.entropy"></a></span><a class="link" href="nmp.html#math_toolkit.dist_ref.nmp.entropy">Entropy</a>
</h5>
<p>
The entropy (or differential entropy) of a continuous probability distribution
<span class="emphasis"><em>p</em></span> is defined as
</p>
<p>
<span class="inlinemediaobject"><object type="image/svg+xml" data="../../../graphs/differential_entropy.svg" width="311" height="43"></object></span>
</p>
<p>
Note that the "natural" properties of the differential entropy
do not uniquely specify a log base. In the Boost library, we <span class="emphasis"><em>always</em></span>
use the natural logarithm to compute differential entropy. This choice of
log base for entropy is sometimes referred to as "entropy measured in
nats". See <a href="https://doi.org/10.1109/TIT.1978.1055832" target="_top">On
the entropy of continuous probability distributions</a> for more information.
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../dist_ref.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../dist_ref.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="dists.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>