boost/libs/compute/example/matrix_transpose.cpp
2018-01-12 21:47:58 +01:00

356 lines
13 KiB
C++

//---------------------------------------------------------------------------//
// Copyright (c) 2014 Benoit Dequidt <benoit.dequidt@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#include <iostream>
#include <cstdlib>
#include <boost/program_options.hpp>
#include <boost/compute/core.hpp>
#include <boost/compute/algorithm/copy.hpp>
#include <boost/compute/container/vector.hpp>
#include <boost/compute/type_traits/type_name.hpp>
#include <boost/compute/utility/source.hpp>
namespace compute = boost::compute;
namespace po = boost::program_options;
using compute::uint_;
const uint_ TILE_DIM = 32;
const uint_ BLOCK_ROWS = 8;
// generate a copy kernel program
compute::kernel make_copy_kernel(const compute::context& context)
{
// source for the copy_kernel program
const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
__kernel void copy_kernel(__global const float *src, __global float *dst)
{
uint x = get_group_id(0) * TILE_DIM + get_local_id(0);
uint y = get_group_id(1) * TILE_DIM + get_local_id(1);
uint width = get_num_groups(0) * TILE_DIM;
for(uint i = 0 ; i < TILE_DIM ; i+= BLOCK_ROWS){
dst[(y+i)*width +x] = src[(y+i)*width + x];
}
}
);
// setup compilation flags for the copy program
std::stringstream options;
options << "-DTILE_DIM=" << TILE_DIM << " -DBLOCK_ROWS=" << BLOCK_ROWS;
// create and build the copy program
compute::program program =
compute::program::build_with_source(source, context, options.str());
// create and return the copy kernel
return program.create_kernel("copy_kernel");
}
// generate a naive transpose kernel
compute::kernel make_naive_transpose_kernel(const compute::context& context)
{
// source for the naive_transpose kernel
const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
__kernel void naive_transpose(__global const float *src, __global float *dst)
{
uint x = get_group_id(0) * TILE_DIM + get_local_id(0);
uint y = get_group_id(1) * TILE_DIM + get_local_id(1);
uint width = get_num_groups(0) * TILE_DIM;
for(uint i = 0 ; i < TILE_DIM; i+= BLOCK_ROWS){
dst[x*width + y+i] = src[(y+i)*width + x];
}
}
);
// setup compilation flags for the naive_transpose program
std::stringstream options;
options << "-DTILE_DIM=" << TILE_DIM << " -DBLOCK_ROWS=" << BLOCK_ROWS;
// create and build the naive_transpose program
compute::program program =
compute::program::build_with_source(source, context, options.str());
// create and return the naive_transpose kernel
return program.create_kernel("naive_transpose");
}
// generates a coalesced transpose kernel
compute::kernel make_coalesced_transpose_kernel(const compute::context& context)
{
// source for the coalesced_transpose kernel
const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
__kernel void coalesced_transpose(__global const float *src, __global float *dst)
{
__local float tile[TILE_DIM][TILE_DIM];
// compute indexes
uint x = get_group_id(0) * TILE_DIM + get_local_id(0);
uint y = get_group_id(1) * TILE_DIM + get_local_id(1);
uint width = get_num_groups(0) * TILE_DIM;
// load inside local memory
for(uint i = 0 ; i < TILE_DIM; i+= BLOCK_ROWS){
tile[get_local_id(1)+i][get_local_id(0)] = src[(y+i)*width + x];
}
barrier(CLK_LOCAL_MEM_FENCE);
// transpose indexes
x = get_group_id(1) * TILE_DIM + get_local_id(0);
y = get_group_id(0) * TILE_DIM + get_local_id(1);
// write output from local memory
for(uint i = 0 ; i < TILE_DIM ; i+=BLOCK_ROWS){
dst[(y+i)*width + x] = tile[get_local_id(0)][get_local_id(1)+i];
}
}
);
// setup compilation flags for the coalesced_transpose program
std::stringstream options;
options << "-DTILE_DIM=" << TILE_DIM << " -DBLOCK_ROWS=" << BLOCK_ROWS;
// create and build the coalesced_transpose program
compute::program program =
compute::program::build_with_source(source, context, options.str());
// create and return coalesced_transpose kernel
return program.create_kernel("coalesced_transpose");
}
// generate a coalesced withtout bank conflicts kernel
compute::kernel make_coalesced_no_bank_conflicts_kernel(const compute::context& context)
{
const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
__kernel void coalesced_no_bank_conflicts(__global const float *src, __global float *dst)
{
// TILE_DIM+1 is here to avoid bank conflicts in local memory
__local float tile[TILE_DIM][TILE_DIM+1];
// compute indexes
uint x = get_group_id(0) * TILE_DIM + get_local_id(0);
uint y = get_group_id(1) * TILE_DIM + get_local_id(1);
uint width = get_num_groups(0) * TILE_DIM;
// load inside local memory
for(uint i = 0 ; i < TILE_DIM; i+= BLOCK_ROWS){
tile[get_local_id(1)+i][get_local_id(0)] = src[(y+i)*width + x];
}
barrier(CLK_LOCAL_MEM_FENCE);
// transpose indexes
x = get_group_id(1) * TILE_DIM + get_local_id(0);
y = get_group_id(0) * TILE_DIM + get_local_id(1);
// write output from local memory
for(uint i = 0 ; i < TILE_DIM ; i+=BLOCK_ROWS){
dst[(y+i)*width + x] = tile[get_local_id(0)][get_local_id(1)+i];
}
}
);
// setup compilation flags for the coalesced_no_bank_conflicts program
std::stringstream options;
options << "-DTILE_DIM=" << TILE_DIM << " -DBLOCK_ROWS=" << BLOCK_ROWS;
// create and build the coalesced_no_bank_conflicts program
compute::program program =
compute::program::build_with_source(source, context, options.str());
// create and return the coalesced_no_bank_conflicts kernel
return program.create_kernel("coalesced_no_bank_conflicts");
}
// compare 'expectedResult' to 'transposedMatrix'. prints an error message if not equal.
bool check_transposition(const std::vector<float>& expectedResult,
uint_ size,
const std::vector<float>& transposedMatrix)
{
for(uint_ i = 0 ; i < size ; ++i){
if(expectedResult[i] != transposedMatrix[i]){
std::cout << "idx = " << i << " , expected " << expectedResult[i]
<< " , got " << transposedMatrix[i] << std::endl;
std::cout << "FAILED" << std::endl;
return false;
}
}
return true;
}
// generate a matrix inside 'in' and do the tranposition inside 'out'
void generate_matrix(std::vector<float>& in, std::vector<float>& out, uint_ rows, uint_ cols)
{
// generate a matrix
for(uint_ i = 0 ; i < rows ; ++i){
for(uint_ j = 0 ; j < cols ; ++j){
in[i*cols + j] = i*cols + j;
}
}
// store transposed result
for(uint_ j = 0; j < cols ; ++j){
for(uint_ i = 0 ; i < rows ; ++i){
out[j*rows + i] = in[i*cols + j];
}
}
}
// neccessary for 64-bit integer on win32
#ifdef _WIN32
#define uint64_t unsigned __int64
#endif
int main(int argc, char *argv[])
{
// setup command line arguments
po::options_description options("options");
options.add_options()
("help", "show usage instructions")
("rows", po::value<uint_>()->default_value(4096), "number of matrix rows")
("cols", po::value<uint_>()->default_value(4096), "number of matrix columns")
;
// parse command line
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, options), vm);
po::notify(vm);
// check command line arguments
if(vm.count("help")){
std::cout << options << std::endl;
return 0;
}
// get number rows and columns for the matrix
const uint_ rows = vm["rows"].as<uint_>();
const uint_ cols = vm["cols"].as<uint_>();
// get the default device
compute::device device = compute::system::default_device();
// print out device name and matrix information
std::cout << "Device: " << device.name() << std::endl;
std::cout << "Matrix Size: " << rows << "x" << cols << std::endl;
std::cout << "Grid Size: " << rows/TILE_DIM << "x" << cols/TILE_DIM << " blocks" << std::endl;
std::cout << "Local Size: " << TILE_DIM << "x" << BLOCK_ROWS << " threads" << std::endl;
std::cout << std::endl;
// On OSX this example does not work on CPU devices
#if defined(__APPLE__)
if(device.type() & compute::device::cpu) {
std::cout << "On OSX this example does not work on CPU devices" << std::endl;
return 0;
}
#endif
const size_t global_work_size[2] = {rows, cols*BLOCK_ROWS/TILE_DIM};
const size_t local_work_size[2] = {TILE_DIM, BLOCK_ROWS};
// setup input data on the host
const uint_ size = rows * cols;
std::vector<float> h_input(size);
std::vector<float> h_output(size);
std::vector<float> expectedResult(size);
generate_matrix(h_input, expectedResult, rows, cols);
// create a context for the device
compute::context context(device);
// device vectors
compute::vector<float> d_input(size, context);
compute::vector<float> d_output(size, context);
// command_queue with profiling
compute::command_queue queue(context, device, compute::command_queue::enable_profiling);
// copy input data
compute::copy(h_input.begin(), h_input.end(), d_input.begin(), queue);
// simple copy kernel
std::cout << "Testing copy_kernel:" << std::endl;
compute::kernel kernel = make_copy_kernel(context);
kernel.set_arg(0, d_input);
kernel.set_arg(1, d_output);
compute::event start;
start = queue.enqueue_nd_range_kernel(kernel, 2, 0, global_work_size, local_work_size);
queue.finish();
uint64_t elapsed = start.duration<boost::chrono::nanoseconds>().count();
std::cout << " Elapsed: " << elapsed << " ns" << std::endl;
std::cout << " BandWidth: " << 2*rows*cols*sizeof(float) / elapsed << " GB/s" << std::endl;
compute::copy(d_output.begin(), d_output.end(), h_output.begin(), queue);
check_transposition(h_input, rows*cols, h_output);
std::cout << std::endl;
// naive_transpose kernel
std::cout << "Testing naive_transpose:" << std::endl;
kernel = make_naive_transpose_kernel(context);
kernel.set_arg(0, d_input);
kernel.set_arg(1, d_output);
start = queue.enqueue_nd_range_kernel(kernel, 2, 0, global_work_size, local_work_size);
queue.finish();
elapsed = start.duration<boost::chrono::nanoseconds>().count();
std::cout << " Elapsed: " << elapsed << " ns" << std::endl;
std::cout << " BandWidth: " << 2*rows*cols*sizeof(float) / elapsed << " GB/s" << std::endl;
compute::copy(d_output.begin(), d_output.end(), h_output.begin(), queue);
check_transposition(expectedResult, rows*cols, h_output);
std::cout << std::endl;
// coalesced_transpose kernel
std::cout << "Testing coalesced_transpose:" << std::endl;
kernel = make_coalesced_transpose_kernel(context);
kernel.set_arg(0, d_input);
kernel.set_arg(1, d_output);
start = queue.enqueue_nd_range_kernel(kernel, 2, 0, global_work_size, local_work_size);
queue.finish();
elapsed = start.duration<boost::chrono::nanoseconds>().count();
std::cout << " Elapsed: " << elapsed << " ns" << std::endl;
std::cout << " BandWidth: " << 2*rows*cols*sizeof(float) / elapsed << " GB/s" << std::endl;
compute::copy(d_output.begin(), d_output.end(), h_output.begin(), queue);
check_transposition(expectedResult, rows*cols, h_output);
std::cout << std::endl;
// coalesced_no_bank_conflicts kernel
std::cout << "Testing coalesced_no_bank_conflicts:" << std::endl;
kernel = make_coalesced_no_bank_conflicts_kernel(context);
kernel.set_arg(0, d_input);
kernel.set_arg(1, d_output);
start = queue.enqueue_nd_range_kernel(kernel, 2, 0, global_work_size, local_work_size);
queue.finish();
elapsed = start.duration<boost::chrono::nanoseconds>().count();
std::cout << " Elapsed: " << elapsed << " ns" << std::endl;
std::cout << " BandWidth: " << 2*rows*cols*sizeof(float) / elapsed << " GB/s" << std::endl;
compute::copy(d_output.begin(), d_output.end(), h_output.begin(), queue);
check_transposition(expectedResult, rows*cols, h_output);
std::cout << std::endl;
return 0;
}