333 lines
16 KiB
HTML
333 lines
16 KiB
HTML
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
|
||
<html>
|
||
<head>
|
||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
||
<title>Using the library</title>
|
||
<link rel="stylesheet" href="../../../doc/src/boostbook.css" type="text/css">
|
||
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
|
||
<link rel="home" href="../index.html" title="The Boost C++ Libraries BoostBook Documentation Subset">
|
||
<link rel="up" href="../lambda.html" title="Chapter 20. Boost.Lambda">
|
||
<link rel="prev" href="s03.html" title="Introduction">
|
||
<link rel="next" href="le_in_details.html" title="Lambda expressions in details">
|
||
</head>
|
||
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
|
||
<table cellpadding="2" width="100%"><tr>
|
||
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../boost.png"></td>
|
||
<td align="center"><a href="../../../index.html">Home</a></td>
|
||
<td align="center"><a href="../../../libs/libraries.htm">Libraries</a></td>
|
||
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
|
||
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
|
||
<td align="center"><a href="../../../more/index.htm">More</a></td>
|
||
</tr></table>
|
||
<hr>
|
||
<div class="spirit-nav">
|
||
<a accesskey="p" href="s03.html"><img src="../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../lambda.html"><img src="../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="le_in_details.html"><img src="../../../doc/src/images/next.png" alt="Next"></a>
|
||
</div>
|
||
<div class="section">
|
||
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
|
||
<a name="lambda.using_library"></a>Using the library</h2></div></div></div>
|
||
<div class="toc"><dl class="toc">
|
||
<dt><span class="section"><a href="using_library.html#lambda.introductory_examples">Introductory Examples</a></span></dt>
|
||
<dt><span class="section"><a href="using_library.html#lambda.parameter_and_return_types">Parameter and return types of lambda functors</a></span></dt>
|
||
<dt><span class="section"><a href="using_library.html#lambda.actual_arguments_to_lambda_functors">About actual arguments to lambda functors</a></span></dt>
|
||
<dt><span class="section"><a href="using_library.html#lambda.storing_bound_arguments">Storing bound arguments in lambda functions</a></span></dt>
|
||
</dl></div>
|
||
<p>
|
||
The purpose of this section is to introduce the basic functionality of the library.
|
||
There are quite a lot of exceptions and special cases, but discussion of them is postponed until later sections.
|
||
|
||
|
||
</p>
|
||
<div class="section">
|
||
<div class="titlepage"><div><div><h3 class="title">
|
||
<a name="lambda.introductory_examples"></a>Introductory Examples</h3></div></div></div>
|
||
<p>
|
||
In this section we give basic examples of using BLL lambda expressions in STL algorithm invocations.
|
||
We start with some simple expressions and work up.
|
||
First, we initialize the elements of a container, say, a <code class="literal">list</code>, to the value <code class="literal">1</code>:
|
||
|
||
|
||
</p>
|
||
<pre class="programlisting">
|
||
list<int> v(10);
|
||
for_each(v.begin(), v.end(), _1 = 1);</pre>
|
||
<p>
|
||
|
||
The expression <code class="literal">_1 = 1</code> creates a lambda functor which assigns the value <code class="literal">1</code> to every element in <code class="literal">v</code>.<a href="#ftn.id-1.3.21.6.3.2.7" class="footnote" name="id-1.3.21.6.3.2.7"><sup class="footnote">[7]</sup></a>
|
||
</p>
|
||
<p>
|
||
Next, we create a container of pointers and make them point to the elements in the first container <code class="literal">v</code>:
|
||
|
||
</p>
|
||
<pre class="programlisting">
|
||
vector<int*> vp(10);
|
||
transform(v.begin(), v.end(), vp.begin(), &_1);</pre>
|
||
<p>
|
||
|
||
The expression <code class="literal">&_1</code> creates a function object for getting the address of each element in <code class="literal">v</code>.
|
||
The addresses get assigned to the corresponding elements in <code class="literal">vp</code>.
|
||
</p>
|
||
<p>
|
||
The next code fragment changes the values in <code class="literal">v</code>.
|
||
For each element, the function <code class="literal">foo</code> is called.
|
||
The original value of the element is passed as an argument to <code class="literal">foo</code>.
|
||
The result of <code class="literal">foo</code> is assigned back to the element:
|
||
|
||
|
||
</p>
|
||
<pre class="programlisting">
|
||
int foo(int);
|
||
for_each(v.begin(), v.end(), _1 = bind(foo, _1));</pre>
|
||
<p>
|
||
</p>
|
||
<p>
|
||
The next step is to sort the elements of <code class="literal">vp</code>:
|
||
|
||
</p>
|
||
<pre class="programlisting">sort(vp.begin(), vp.end(), *_1 > *_2);</pre>
|
||
<p>
|
||
|
||
In this call to <code class="literal">sort</code>, we are sorting the elements by their contents in descending order.
|
||
</p>
|
||
<p>
|
||
Finally, the following <code class="literal">for_each</code> call outputs the sorted content of <code class="literal">vp</code> separated by line breaks:
|
||
|
||
</p>
|
||
<pre class="programlisting">
|
||
for_each(vp.begin(), vp.end(), cout << *_1 << '\n');
|
||
</pre>
|
||
<p>
|
||
|
||
Note that a normal (non-lambda) expression as subexpression of a lambda expression is evaluated immediately.
|
||
This may cause surprises.
|
||
For instance, if the previous example is rewritten as
|
||
</p>
|
||
<pre class="programlisting">
|
||
for_each(vp.begin(), vp.end(), cout << '\n' << *_1);
|
||
</pre>
|
||
<p>
|
||
the subexpression <code class="literal">cout << '\n'</code> is evaluated immediately and the effect is to output a single line break, followed by the elements of <code class="literal">vp</code>.
|
||
The BLL provides functions <code class="literal">constant</code> and <code class="literal">var</code> to turn constants and, respectively, variables into lambda expressions, and can be used to prevent the immediate evaluation of subexpressions:
|
||
</p>
|
||
<pre class="programlisting">
|
||
for_each(vp.begin(), vp.end(), cout << constant('\n') << *_1);
|
||
</pre>
|
||
<p>
|
||
These functions are described more thoroughly in <a class="xref" href="le_in_details.html#lambda.delaying_constants_and_variables" title="Delaying constants and variables">the section called “Delaying constants and variables”</a>
|
||
|
||
</p>
|
||
</div>
|
||
<div class="section">
|
||
<div class="titlepage"><div><div><h3 class="title">
|
||
<a name="lambda.parameter_and_return_types"></a>Parameter and return types of lambda functors</h3></div></div></div>
|
||
<p>
|
||
During the invocation of a lambda functor, the actual arguments are substituted for the placeholders.
|
||
The placeholders do not dictate the type of these actual arguments.
|
||
The basic rule is that a lambda function can be called with arguments of any types, as long as the lambda expression with substitutions performed is a valid C++ expression.
|
||
As an example, the expression
|
||
<code class="literal">_1 + _2</code> creates a binary lambda functor.
|
||
It can be called with two objects of any types <code class="literal">A</code> and <code class="literal">B</code> for which <code class="literal">operator+(A,B)</code> is defined (and for which BLL knows the return type of the operator, see below).
|
||
</p>
|
||
<p>
|
||
C++ lacks a mechanism to query a type of an expression.
|
||
However, this precise mechanism is crucial for the implementation of C++ lambda expressions.
|
||
Consequently, BLL includes a somewhat complex type deduction system which uses a set of traits classes for deducing the resulting type of lambda functions.
|
||
It handles expressions where the operands are of built-in types and many of the expressions with operands of standard library types.
|
||
Many of the user defined types are covered as well, particularly if the user defined operators obey normal conventions in defining the return types.
|
||
</p>
|
||
<p>
|
||
There are, however, cases when the return type cannot be deduced. For example, suppose you have defined:
|
||
|
||
</p>
|
||
<pre class="programlisting">C operator+(A, B);</pre>
|
||
<p>
|
||
|
||
The following lambda function invocation fails, since the return type cannot be deduced:
|
||
|
||
</p>
|
||
<pre class="programlisting">A a; B b; (_1 + _2)(a, b);</pre>
|
||
<p>
|
||
</p>
|
||
<p>
|
||
There are two alternative solutions to this.
|
||
The first is to extend the BLL type deduction system to cover your own types (see <a class="xref" href="extending.html" title="Extending return type deduction system">the section called “Extending return type deduction system”</a>).
|
||
The second is to use a special lambda expression (<code class="literal">ret</code>) which defines the return type in place (see <a class="xref" href="le_in_details.html#lambda.overriding_deduced_return_type" title="Overriding the deduced return type">the section called “Overriding the deduced return type”</a>):
|
||
|
||
</p>
|
||
<pre class="programlisting">A a; B b; ret<C>(_1 + _2)(a, b);</pre>
|
||
<p>
|
||
</p>
|
||
<p>
|
||
For bind expressions, the return type can be defined as a template argument of the bind function as well:
|
||
</p>
|
||
<pre class="programlisting">bind<int>(foo, _1, _2);</pre>
|
||
<p>
|
||
|
||
|
||
</p>
|
||
</div>
|
||
<div class="section">
|
||
<div class="titlepage"><div><div><h3 class="title">
|
||
<a name="lambda.actual_arguments_to_lambda_functors"></a>About actual arguments to lambda functors</h3></div></div></div>
|
||
<p>A general restriction for the actual arguments is that they cannot be non-const rvalues.
|
||
For example:
|
||
|
||
</p>
|
||
<pre class="programlisting">
|
||
int i = 1; int j = 2;
|
||
(_1 + _2)(i, j); // ok
|
||
(_1 + _2)(1, 2); // error (!)
|
||
</pre>
|
||
<p>
|
||
|
||
This restriction is not as bad as it may look.
|
||
Since the lambda functors are most often called inside STL-algorithms,
|
||
the arguments originate from dereferencing iterators and the dereferencing operators seldom return rvalues.
|
||
And for the cases where they do, there are workarounds discussed in
|
||
<a class="xref" href="le_in_details.html#lambda.rvalues_as_actual_arguments" title="Rvalues as actual arguments to lambda functors">the section called “Rvalues as actual arguments to lambda functors”</a>.
|
||
|
||
|
||
</p>
|
||
</div>
|
||
<div class="section">
|
||
<div class="titlepage"><div><div><h3 class="title">
|
||
<a name="lambda.storing_bound_arguments"></a>Storing bound arguments in lambda functions</h3></div></div></div>
|
||
<p>
|
||
|
||
By default, temporary const copies of the bound arguments are stored
|
||
in the lambda functor.
|
||
|
||
This means that the value of a bound argument is fixed at the time of the
|
||
creation of the lambda function and remains constant during the lifetime
|
||
of the lambda function object.
|
||
For example:
|
||
</p>
|
||
<pre class="programlisting">
|
||
int i = 1;
|
||
(_1 = 2, _1 + i)(i);
|
||
</pre>
|
||
<p>
|
||
The comma operator is overloaded to combine lambda expressions into a sequence;
|
||
the resulting unary lambda functor first assigns 2 to its argument,
|
||
then adds the value of <code class="literal">i</code> to it.
|
||
The value of the expression in the last line is 3, not 4.
|
||
In other words, the lambda expression that is created is
|
||
<code class="literal">lambda x.(x = 2, x + 1)</code> rather than
|
||
<code class="literal">lambda x.(x = 2, x + i)</code>.
|
||
|
||
</p>
|
||
<p>
|
||
|
||
As said, this is the default behavior for which there are exceptions.
|
||
The exact rules are as follows:
|
||
|
||
</p>
|
||
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
|
||
<li class="listitem">
|
||
<p>
|
||
|
||
The programmer can control the storing mechanism with <code class="literal">ref</code>
|
||
and <code class="literal">cref</code> wrappers <a class="xref" href="../lambda.html#cit:boost::ref" title="Boost ref">[<abbr class="abbrev">ref</abbr>]</a>.
|
||
|
||
Wrapping an argument with <code class="literal">ref</code>, or <code class="literal">cref</code>,
|
||
instructs the library to store the argument as a reference,
|
||
or as a reference to const respectively.
|
||
|
||
For example, if we rewrite the previous example and wrap the variable
|
||
<code class="literal">i</code> with <code class="literal">ref</code>,
|
||
we are creating the lambda expression <code class="literal">lambda x.(x = 2, x + i)</code>
|
||
and the value of the expression in the last line will be 4:
|
||
|
||
</p>
|
||
<pre class="programlisting">
|
||
i = 1;
|
||
(_1 = 2, _1 + ref(i))(i);
|
||
</pre>
|
||
<p>
|
||
|
||
Note that <code class="literal">ref</code> and <code class="literal">cref</code> are different
|
||
from <code class="literal">var</code> and <code class="literal">constant</code>.
|
||
|
||
While the latter ones create lambda functors, the former do not.
|
||
For example:
|
||
|
||
</p>
|
||
<pre class="programlisting">
|
||
int i;
|
||
var(i) = 1; // ok
|
||
ref(i) = 1; // not ok, ref(i) is not a lambda functor
|
||
</pre>
|
||
<p>
|
||
|
||
The functions <code class="literal">ref</code> and <code class="literal">cref</code> mostly
|
||
exist for historical reasons,
|
||
and <code class="literal">ref</code> can always
|
||
be replaced with <code class="literal">var</code>, and <code class="literal">cref</code> with
|
||
<code class="literal">constant_ref</code>.
|
||
See <a class="xref" href="le_in_details.html#lambda.delaying_constants_and_variables" title="Delaying constants and variables">the section called “Delaying constants and variables”</a> for details.
|
||
The <code class="literal">ref</code> and <code class="literal">cref</code> functions are
|
||
general purpose utility functions in Boost, and hence defined directly
|
||
in the <code class="literal">boost</code> namespace.
|
||
|
||
</p>
|
||
</li>
|
||
<li class="listitem"><p>
|
||
Array types cannot be copied, they are thus stored as const reference by default.
|
||
</p></li>
|
||
<li class="listitem">
|
||
<p>
|
||
For some expressions it makes more sense to store the arguments as references.
|
||
|
||
For example, the obvious intention of the lambda expression
|
||
<code class="literal">i += _1</code> is that calls to the lambda functor affect the
|
||
value of the variable <code class="literal">i</code>,
|
||
rather than some temporary copy of it.
|
||
|
||
As another example, the streaming operators take their leftmost argument
|
||
as non-const references.
|
||
|
||
The exact rules are:
|
||
|
||
</p>
|
||
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: circle; ">
|
||
<li class="listitem"><p>The left argument of compound assignment operators (<code class="literal">+=</code>, <code class="literal">*=</code>, etc.) are stored as references to non-const.</p></li>
|
||
<li class="listitem"><p>If the left argument of <code class="literal"><<</code> or <code class="literal">>></code> operator is derived from an instantiation of <code class="literal">basic_ostream</code> or respectively from <code class="literal">basic_istream</code>, the argument is stored as a reference to non-const.
|
||
For all other types, the argument is stored as a copy.
|
||
</p></li>
|
||
<li class="listitem"><p>
|
||
In pointer arithmetic expressions, non-const array types are stored as non-const references.
|
||
This is to prevent pointer arithmetic making non-const arrays const.
|
||
|
||
</p></li>
|
||
</ul></div>
|
||
<p>
|
||
|
||
</p>
|
||
</li>
|
||
</ul></div>
|
||
<p>
|
||
</p>
|
||
</div>
|
||
<div class="footnotes">
|
||
<br><hr style="width:100; text-align:left;margin-left: 0">
|
||
<div id="ftn.id-1.3.21.6.3.2.7" class="footnote"><p><a href="#id-1.3.21.6.3.2.7" class="para"><sup class="para">[7] </sup></a>
|
||
Strictly taken, the C++ standard defines <code class="literal">for_each</code> as a <span class="emphasis"><em>non-modifying sequence operation</em></span>, and the function object passed to <code class="literal">for_each</code> should not modify its argument.
|
||
The requirements for the arguments of <code class="literal">for_each</code> are unnecessary strict, since as long as the iterators are <span class="emphasis"><em>mutable</em></span>, <code class="literal">for_each</code> accepts a function object that can have side-effects on their argument.
|
||
Nevertheless, it is straightforward to provide another function template with the functionality of<code class="literal">std::for_each</code> but more fine-grained requirements for its arguments.
|
||
</p></div>
|
||
</div>
|
||
</div>
|
||
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
|
||
<td align="left"></td>
|
||
<td align="right"><div class="copyright-footer">Copyright © 1999-2004 Jaakko Järvi, Gary Powell<p>Use, modification and distribution is subject to the Boost
|
||
Software License, Version 1.0. (See accompanying file
|
||
<code class="filename">LICENSE_1_0.txt</code> or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)</p>
|
||
</div></td>
|
||
</tr></table>
|
||
<hr>
|
||
<div class="spirit-nav">
|
||
<a accesskey="p" href="s03.html"><img src="../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../lambda.html"><img src="../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="le_in_details.html"><img src="../../../doc/src/images/next.png" alt="Next"></a>
|
||
</div>
|
||
</body>
|
||
</html>
|