2018-01-12 21:47:58 +01:00

183 lines
17 KiB
HTML

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Gauss-Legendre quadrature</title>
<link rel="stylesheet" href="../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../index.html" title="Math Toolkit 2.6.0">
<link rel="up" href="../quadrature.html" title="Chapter&#160;11.&#160;Quadrature">
<link rel="prev" href="trapezoidal.html" title="Adaptive Trapezoidal Quadrature">
<link rel="next" href="gauss_kronrod.html" title="Gauss-Kronrod Quadrature">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="trapezoidal.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quadrature.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="gauss_kronrod.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="math_toolkit.gauss"></a><a class="link" href="gauss.html" title="Gauss-Legendre quadrature">Gauss-Legendre quadrature</a>
</h2></div></div></div>
<h4>
<a name="math_toolkit.gauss.h0"></a>
<span class="phrase"><a name="math_toolkit.gauss.synopsis"></a></span><a class="link" href="gauss.html#math_toolkit.gauss.synopsis">Synopsis</a>
</h4>
<p>
<code class="computeroutput"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">quadrature</span><span class="special">/</span><span class="identifier">gauss</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span></code>
</p>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">quadrature</span><span class="special">{</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Real</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">Points</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">policies</span><span class="special">::</span><span class="identifier">policy</span><span class="special">&lt;&gt;</span> <span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">gauss</span>
<span class="special">{</span>
<span class="keyword">static</span> <span class="keyword">const</span> <span class="identifier">RandomAccessContainer</span><span class="special">&amp;</span> <span class="identifier">abscissa</span><span class="special">();</span>
<span class="keyword">static</span> <span class="keyword">const</span> <span class="identifier">RandomAccessContainer</span><span class="special">&amp;</span> <span class="identifier">weights</span><span class="special">();</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">&gt;</span>
<span class="keyword">static</span> <span class="identifier">value_type</span> <span class="identifier">integrate</span><span class="special">(</span><span class="identifier">F</span> <span class="identifier">f</span><span class="special">,</span> <span class="identifier">Real</span><span class="special">*</span> <span class="identifier">pL1</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">&gt;</span>
<span class="keyword">static</span> <span class="identifier">value_type</span> <span class="identifier">integrate</span><span class="special">(</span><span class="identifier">F</span> <span class="identifier">f</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">b</span><span class="special">,</span> <span class="identifier">Real</span><span class="special">*</span> <span class="identifier">pL1</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">);</span>
<span class="special">};</span>
<span class="special">}}}</span> <span class="comment">// namespaces</span>
</pre>
<h4>
<a name="math_toolkit.gauss.h1"></a>
<span class="phrase"><a name="math_toolkit.gauss.description"></a></span><a class="link" href="gauss.html#math_toolkit.gauss.description">description</a>
</h4>
<p>
The <code class="computeroutput"><span class="identifier">gauss</span></code> class template performs
"one shot" non-adaptive Gauss-Legendre integration on some arbitrary
function <span class="emphasis"><em>f</em></span> using the number of evaluation points as specified
by <span class="emphasis"><em>Points</em></span>.
</p>
<p>
This is intentionally a very simple quadrature routine, it obtains no estimate
of the error, and is not adaptive, but is very efficient in simple cases that
involve integrating smooth "bell like" functions.
</p>
<pre class="programlisting"><span class="keyword">static</span> <span class="keyword">const</span> <span class="identifier">RandomAccessContainer</span><span class="special">&amp;</span> <span class="identifier">abscissa</span><span class="special">();</span>
<span class="keyword">static</span> <span class="keyword">const</span> <span class="identifier">RandomAccessContainer</span><span class="special">&amp;</span> <span class="identifier">weights</span><span class="special">();</span>
</pre>
<p>
These functions provide direct access to the abscissa and weights used to perform
the quadrature: the return type depends on the <span class="emphasis"><em>Points</em></span>
template parameter, but is always a RandomAccessContainer type. Note that only
positive (or zero) abscissa and weights are stored.
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">&gt;</span>
<span class="keyword">static</span> <span class="identifier">value_type</span> <span class="identifier">integrate</span><span class="special">(</span><span class="identifier">F</span> <span class="identifier">f</span><span class="special">,</span> <span class="identifier">Real</span><span class="special">*</span> <span class="identifier">pL1</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">);</span>
</pre>
<p>
Integrates <span class="emphasis"><em>f</em></span> over (-1,1), and optionally sets <code class="computeroutput"><span class="special">*</span><span class="identifier">pL1</span></code> to the
L1 norm of the returned value: if this is substantially larger than the return
value, then the sum was ill-conditioned. Note however, that no error estimate
is available.
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">&gt;</span>
<span class="keyword">static</span> <span class="identifier">value_type</span> <span class="identifier">integrate</span><span class="special">(</span><span class="identifier">F</span> <span class="identifier">f</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">b</span><span class="special">,</span> <span class="identifier">Real</span><span class="special">*</span> <span class="identifier">pL1</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">);</span>
</pre>
<p>
Integrates <span class="emphasis"><em>f</em></span> over (a,b), and optionally sets <code class="computeroutput"><span class="special">*</span><span class="identifier">pL1</span></code> to the
L1 norm of the returned value: if this is substantially larger than the return
value, then the sum was ill-conditioned. Note however, that no error estimate
is available. This function supports both finite and infinite <span class="emphasis"><em>a</em></span>
and <span class="emphasis"><em>b</em></span>, as long as <code class="computeroutput"><span class="identifier">a</span>
<span class="special">&lt;</span> <span class="identifier">b</span></code>.
</p>
<h4>
<a name="math_toolkit.gauss.h2"></a>
<span class="phrase"><a name="math_toolkit.gauss.choosing_the_number_of_points"></a></span><a class="link" href="gauss.html#math_toolkit.gauss.choosing_the_number_of_points">Choosing
the number of points</a>
</h4>
<p>
Internally class <code class="computeroutput"><span class="identifier">gauss</span></code> has
pre-computed tables of abscissa and weights for 7, 15, 20, 25 and 30 points
at up to 100-decimal digit precision. That means that using for example, <code class="computeroutput"><span class="identifier">gauss</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">,</span> <span class="number">30</span><span class="special">&gt;::</span><span class="identifier">integrate</span></code>
incurs absolutely zero set-up overhead from computing the abscissa/weight pairs.
When using multiprecision types with less than 100 digits of precision, then
there is a small initial one time cost, while the abscissa/weight pairs are
constructed from strings.
</p>
<p>
However, for types with higher precision, or numbers of points other than those
given above, the abscissa/weight pairs are computed when first needed and then
cached for future use, which does incur a noticeable overhead. If this is likely
to be an issue, then
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
Defining BOOST_MATH_GAUSS_NO_COMPUTE_ON_DEMAND will result in a compile-time
error, whenever a combination of number type and number of points is used
which does not have pre-computed values.
</li>
<li class="listitem">
There is a program <a href="../../../tools/gauss_kronrod_constants.cpp" target="_top">gauss_kronrod_constants.cpp</a>
which was used to provide the pre-computed values already in gauss.hpp.
The program can be trivially modified to generate code and constants for
other precisions and numbers of points.
</li>
</ul></div>
<h4>
<a name="math_toolkit.gauss.h3"></a>
<span class="phrase"><a name="math_toolkit.gauss.examples"></a></span><a class="link" href="gauss.html#math_toolkit.gauss.examples">Examples</a>
</h4>
<p>
We'll begin by integrating t<sup>2</sup> atan(t) over (0,1) using a 7 term Gauss-Legendre
rule, and begin by defining the function to integrate as a C++ lambda expression:
</p>
<pre class="programlisting"><span class="keyword">using</span> <span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">quadrature</span><span class="special">;</span>
<span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[](</span><span class="keyword">const</span> <span class="keyword">double</span><span class="special">&amp;</span> <span class="identifier">t</span><span class="special">)</span> <span class="special">{</span> <span class="keyword">return</span> <span class="identifier">t</span> <span class="special">*</span> <span class="identifier">t</span> <span class="special">*</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">atan</span><span class="special">(</span><span class="identifier">t</span><span class="special">);</span> <span class="special">};</span>
</pre>
<p>
Integration is simply a matter of calling the <code class="computeroutput"><span class="identifier">gauss</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">,</span>
<span class="number">7</span><span class="special">&gt;::</span><span class="identifier">integrate</span></code> method:
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">Q</span> <span class="special">=</span> <span class="identifier">gauss</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">,</span> <span class="number">7</span><span class="special">&gt;::</span><span class="identifier">integrate</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="number">0</span><span class="special">,</span> <span class="number">1</span><span class="special">);</span>
</pre>
<p>
Which yields a value 0.2106572512 accurate to 1e-10.
</p>
<p>
For more accurate evaluations, we'll move to a multiprecision type and use
a 20-point integration scheme:
</p>
<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">multiprecision</span><span class="special">::</span><span class="identifier">cpp_bin_float_quad</span><span class="special">;</span>
<span class="keyword">auto</span> <span class="identifier">f2</span> <span class="special">=</span> <span class="special">[](</span><span class="keyword">const</span> <span class="identifier">cpp_bin_float_quad</span><span class="special">&amp;</span> <span class="identifier">t</span><span class="special">)</span> <span class="special">{</span> <span class="keyword">return</span> <span class="identifier">t</span> <span class="special">*</span> <span class="identifier">t</span> <span class="special">*</span> <span class="identifier">atan</span><span class="special">(</span><span class="identifier">t</span><span class="special">);</span> <span class="special">};</span>
<span class="identifier">cpp_bin_float_quad</span> <span class="identifier">Q2</span> <span class="special">=</span> <span class="identifier">gauss</span><span class="special">&lt;</span><span class="identifier">cpp_bin_float_quad</span><span class="special">,</span> <span class="number">20</span><span class="special">&gt;::</span><span class="identifier">integrate</span><span class="special">(</span><span class="identifier">f2</span><span class="special">,</span> <span class="number">0</span><span class="special">,</span> <span class="number">1</span><span class="special">);</span>
</pre>
<p>
Which yields 0.2106572512258069881080923020669, which is accurate to 5e-28.
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2010, 2012-2014, 2017 Nikhar
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Johan R&#229;de, Gautam
Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle Walker
and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="trapezoidal.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quadrature.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="gauss_kronrod.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>