boost/libs/yap/example/self_evaluation.cpp
2021-10-05 21:37:46 +02:00

238 lines
7.7 KiB
C++

// Copyright (C) 2016-2018 T. Zachary Laine
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//[ self_evaluation
#include <boost/yap/expression.hpp>
#include <boost/optional.hpp>
#include <boost/hana/fold.hpp>
#include <boost/hana/maximum.hpp>
#include <algorithm>
#include <cassert>
#include <iostream>
#include <vector>
// A super-basic matrix type, and a few associated operations.
struct matrix
{
matrix() : values_(), rows_(0), cols_(0) {}
matrix(int rows, int cols) : values_(rows * cols), rows_(rows), cols_(cols)
{
assert(0 < rows);
assert(0 < cols);
}
int rows() const { return rows_; }
int cols() const { return cols_; }
double operator()(int r, int c) const
{ return values_[r * cols_ + c]; }
double & operator()(int r, int c)
{ return values_[r * cols_ + c]; }
private:
std::vector<double> values_;
int rows_;
int cols_;
};
matrix operator*(matrix const & lhs, double x)
{
matrix retval = lhs;
for (int i = 0; i < retval.rows(); ++i) {
for (int j = 0; j < retval.cols(); ++j) {
retval(i, j) *= x;
}
}
return retval;
}
matrix operator*(double x, matrix const & lhs) { return lhs * x; }
matrix operator+(matrix const & lhs, matrix const & rhs)
{
assert(lhs.rows() == rhs.rows());
assert(lhs.cols() == rhs.cols());
matrix retval = lhs;
for (int i = 0; i < retval.rows(); ++i) {
for (int j = 0; j < retval.cols(); ++j) {
retval(i, j) += rhs(i, j);
}
}
return retval;
}
// daxpy() means Double-precision AX Plus Y. This crazy name comes from BLAS.
// It is more efficient than a naive implementation, because it does not
// create temporaries. The covnention of using Y as an out-parameter comes
// from FORTRAN BLAS.
matrix & daxpy(double a, matrix const & x, matrix & y)
{
assert(x.rows() == y.rows());
assert(x.cols() == y.cols());
for (int i = 0; i < y.rows(); ++i) {
for (int j = 0; j < y.cols(); ++j) {
y(i, j) += a * x(i, j);
}
}
return y;
}
template <boost::yap::expr_kind Kind, typename Tuple>
struct self_evaluating_expr;
template <boost::yap::expr_kind Kind, typename Tuple>
auto evaluate_matrix_expr(self_evaluating_expr<Kind, Tuple> const & expr);
// This is the primary template for our expression template. If you assign a
// self_evaluating_expr to a matrix, its conversion operator transforms and
// evaluates the expression with a call to evaluate_matrix_expr().
template <boost::yap::expr_kind Kind, typename Tuple>
struct self_evaluating_expr
{
operator auto() const;
static const boost::yap::expr_kind kind = Kind;
Tuple elements;
};
// This is a specialization of our expression template for assignment
// expressions. The destructor transforms and evaluates via a call to
// evaluate_matrix_expr(), and then assigns the result to the variable on the
// left side of the assignment.
//
// In a production implementation, you'd need to have specializations for
// plus_assign, minus_assign, etc.
template <typename Tuple>
struct self_evaluating_expr<boost::yap::expr_kind::assign, Tuple>
{
~self_evaluating_expr();
static const boost::yap::expr_kind kind = boost::yap::expr_kind::assign;
Tuple elements;
};
struct use_daxpy
{
// A plus-expression, which may be of the form double * matrix + matrix,
// or may be something else. Since our daxpy() above requires a mutable
// "y", we only need to match a mutable lvalue matrix reference here.
template <typename Tuple>
auto operator()(
boost::yap::expr_tag<boost::yap::expr_kind::plus>,
self_evaluating_expr<boost::yap::expr_kind::multiplies, Tuple> const & expr,
matrix & m)
{
// Here, we transform the left-hand side into a pair if it's the
// double * matrix operation we're looking for. Otherwise, we just
// get a copy of the left side expression.
//
// Note that this is a bit of a cheat, done for clarity. If we pass a
// larger expression that happens to contain a double * matrix
// subexpression, that subexpression will be transformed into a tuple!
// In production code, this transform should probably only be
// performed on an expression with all terminal members.
auto lhs = boost::yap::transform(
expr,
[](boost::yap::expr_tag<boost::yap::expr_kind::multiplies>,
double d,
matrix const & m) {
return std::pair<double, matrix const &>(d, m);
});
// If we got back a copy of expr above, just re-construct the
// expression this function mathes; in other words, do not effectively
// transform anything. Otherwise, replace the expression matched by
// this function with a call to daxpy().
if constexpr (boost::yap::is_expr<decltype(lhs)>::value) {
return expr + m;
} else {
return boost::yap::make_terminal(daxpy)(lhs.first, lhs.second, m);
}
}
};
// This is the heart of what self_evaluating_expr does. If we had other
// optimizations/transformations we wanted to do, we'd put them in this
// function, either before or after the use_daxpy transformation.
template <boost::yap::expr_kind Kind, typename Tuple>
auto evaluate_matrix_expr(self_evaluating_expr<Kind, Tuple> const & expr)
{
auto daxpy_form = boost::yap::transform(expr, use_daxpy{});
return boost::yap::evaluate(daxpy_form);
}
template<boost::yap::expr_kind Kind, typename Tuple>
self_evaluating_expr<Kind, Tuple>::operator auto() const
{
return evaluate_matrix_expr(*this);
}
template<typename Tuple>
self_evaluating_expr<boost::yap::expr_kind::assign, Tuple>::
~self_evaluating_expr()
{
using namespace boost::hana::literals;
boost::yap::evaluate(elements[0_c]) = evaluate_matrix_expr(elements[1_c]);
}
// In order to define the = operator with the semantics we want, it's
// convenient to derive a terminal type from a terminal instantiation of
// self_evaluating_expr. Note that we could have written a template
// specialization here instead -- either one would work. That would of course
// have required more typing.
struct self_evaluating :
self_evaluating_expr<
boost::yap::expr_kind::terminal,
boost::hana::tuple<matrix>
>
{
self_evaluating() {}
explicit self_evaluating(matrix m)
{ elements = boost::hana::tuple<matrix>(std::move(m)); }
BOOST_YAP_USER_ASSIGN_OPERATOR(self_evaluating_expr, ::self_evaluating_expr);
};
BOOST_YAP_USER_BINARY_OPERATOR(plus, self_evaluating_expr, self_evaluating_expr)
BOOST_YAP_USER_BINARY_OPERATOR(minus, self_evaluating_expr, self_evaluating_expr)
BOOST_YAP_USER_BINARY_OPERATOR(multiplies, self_evaluating_expr, self_evaluating_expr)
int main()
{
matrix identity(2, 2);
identity(0, 0) = 1.0;
identity(1, 1) = 1.0;
// These are YAP-ified terminal expressions.
self_evaluating m1(identity);
self_evaluating m2(identity);
self_evaluating m3(identity);
// This transforms the YAP expression to use daxpy(), so it creates no
// temporaries. The transform happens in the destructor of the
// assignment-expression specialization of self_evaluating_expr.
m1 = 3.0 * m2 + m3;
// Same as above, except that it uses the matrix conversion operator on
// the self_evaluating_expr primary template, because here we're assigning
// a YAP expression to a non-YAP-ified matrix.
matrix m_result_1 = 3.0 * m2 + m3;
// Creates temporaries and does not use daxpy(), because the A * X + Y
// pattern does not occur within the expression.
matrix m_result_2 = 3.0 * m2;
return 0;
}
//]