701 lines
25 KiB
C++
701 lines
25 KiB
C++
///////////////////////////////////////////////////////////////
|
|
// Copyright 2012 John Maddock. Distributed under the Boost
|
|
// Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt
|
|
|
|
#include <boost/math/constants/constants.hpp>
|
|
#include <boost/multiprecision/cpp_dec_float.hpp>
|
|
#include <boost/math/special_functions/gamma.hpp>
|
|
#include <boost/math/special_functions/bessel.hpp>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
|
|
#if !defined(BOOST_NO_CXX11_HDR_ARRAY) && !defined(BOOST_NO_CXX11_LAMBDAS) && !(defined(CI_SUPPRESS_KNOWN_ISSUES) && defined(__GNUC__) && defined(_WIN32))
|
|
|
|
#include <array>
|
|
|
|
//[AOS1
|
|
|
|
/*`Generic numeric programming employs templates to use the same code for different
|
|
floating-point types and functions. Consider the area of a circle a of radius r, given by
|
|
|
|
[:['a = [pi] * r[super 2]]]
|
|
|
|
The area of a circle can be computed in generic programming using Boost.Math
|
|
for the constant [pi] as shown below:
|
|
|
|
*/
|
|
|
|
//=#include <boost/math/constants/constants.hpp>
|
|
|
|
template<typename T>
|
|
inline T area_of_a_circle(T r)
|
|
{
|
|
using boost::math::constants::pi;
|
|
return pi<T>() * r * r;
|
|
}
|
|
|
|
/*`
|
|
It is possible to use `area_of_a_circle()` with built-in floating-point types as
|
|
well as floating-point types from Boost.Multiprecision. In particular, consider a
|
|
system with 4-byte single-precision float, 8-byte double-precision double and also the
|
|
`cpp_dec_float_50` data type from Boost.Multiprecision with 50 decimal digits
|
|
of precision.
|
|
|
|
We can compute and print the approximate area of a circle
|
|
with radius 123/100 for `float`, `double` and `cpp_dec_float_50` with the program below
|
|
(see next section for choosing 123/100 instead of 1.23).
|
|
|
|
*/
|
|
|
|
//]
|
|
|
|
//[AOS3
|
|
|
|
/*`In later examples we'll look at calling both standard library and Boost.Math functions from within generic code.
|
|
We'll also show how to cope with template arguments which are expression-templates rather than number types.
|
|
|
|
But first some warnings about how multiprecision types are slightly but significantly different __fundamental_types. */
|
|
|
|
//]
|
|
|
|
//[JEL
|
|
|
|
/*`
|
|
In this example we'll show several implementations of the
|
|
[@http://mathworld.wolfram.com/LambdaFunction.html Jahnke and Emden Lambda function],
|
|
each implementation a little more sophisticated than the last.
|
|
|
|
The Jahnke-Emden Lambda function is defined by the equation:
|
|
|
|
[:['JahnkeEmden(v, z) = [Gamma](v+1) * J[sub v](z) / (z / 2)[super v]]]
|
|
|
|
If we were to implement this at double precision using Boost.Math's facilities for the Gamma and Bessel
|
|
function calls it would look like this:
|
|
|
|
*/
|
|
|
|
double JEL1(double v, double z)
|
|
{
|
|
return boost::math::tgamma(v + 1) * boost::math::cyl_bessel_j(v, z) / std::pow(z / 2, v);
|
|
}
|
|
|
|
/*`
|
|
Calling this function as:
|
|
|
|
std::cout << std::scientific << std::setprecision(std::numeric_limits<double>::digits10);
|
|
std::cout << JEL1(2.5, 0.5) << std::endl;
|
|
|
|
Yields the output:
|
|
|
|
[pre 9.822663964796047e-001]
|
|
|
|
Now let's implement the function again, but this time using the multiprecision type
|
|
`cpp_dec_float_50` as the argument type:
|
|
|
|
*/
|
|
|
|
boost::multiprecision::cpp_dec_float_50
|
|
JEL2(boost::multiprecision::cpp_dec_float_50 v, boost::multiprecision::cpp_dec_float_50 z)
|
|
{
|
|
return boost::math::tgamma(v + 1) * boost::math::cyl_bessel_j(v, z) / boost::multiprecision::pow(z / 2, v);
|
|
}
|
|
|
|
/*`
|
|
The implementation is almost the same as before, but with one key difference - we can no longer call
|
|
`std::pow`, instead we must call the version inside the `boost::multiprecision` namespace. In point of
|
|
fact, we could have omitted the namespace prefix on the call to `pow` since the right overload would
|
|
have been found via [@http://en.wikipedia.org/wiki/Argument-dependent_name_lookup
|
|
argument dependent lookup] in any case.
|
|
|
|
Note also that the first argument to `pow` along with the argument to `tgamma` in the above code
|
|
are actually expression templates. The `pow` and `tgamma` functions will handle these arguments
|
|
just fine.
|
|
|
|
Here's an example of how the function may be called:
|
|
|
|
std::cout << std::scientific << std::setprecision(std::numeric_limits<cpp_dec_float_50>::digits10);
|
|
std::cout << JEL2(cpp_dec_float_50(2.5), cpp_dec_float_50(0.5)) << std::endl;
|
|
|
|
Which outputs:
|
|
|
|
[pre 9.82266396479604757017335009796882833995903762577173e-01]
|
|
|
|
Now that we've seen some non-template examples, lets repeat the code again, but this time as a template
|
|
that can be called either with a builtin type (`float`, `double` etc), or with a multiprecision type:
|
|
|
|
*/
|
|
|
|
template <class Float>
|
|
Float JEL3(Float v, Float z)
|
|
{
|
|
using std::pow;
|
|
return boost::math::tgamma(v + 1) * boost::math::cyl_bessel_j(v, z) / pow(z / 2, v);
|
|
}
|
|
|
|
/*`
|
|
|
|
Once again the code is almost the same as before, but the call to `pow` has changed yet again.
|
|
We need the call to resolve to either `std::pow` (when the argument is a builtin type), or
|
|
to `boost::multiprecision::pow` (when the argument is a multiprecision type). We do that by
|
|
making the call unqualified so that versions of `pow` defined in the same namespace as type
|
|
`Float` are found via argument dependent lookup, while the `using std::pow` directive makes
|
|
the standard library versions visible for builtin floating point types.
|
|
|
|
Let's call the function with both `double` and multiprecision arguments:
|
|
|
|
std::cout << std::scientific << std::setprecision(std::numeric_limits<double>::digits10);
|
|
std::cout << JEL3(2.5, 0.5) << std::endl;
|
|
std::cout << std::scientific << std::setprecision(std::numeric_limits<cpp_dec_float_50>::digits10);
|
|
std::cout << JEL3(cpp_dec_float_50(2.5), cpp_dec_float_50(0.5)) << std::endl;
|
|
|
|
Which outputs:
|
|
|
|
[pre
|
|
9.822663964796047e-001
|
|
9.82266396479604757017335009796882833995903762577173e-01
|
|
]
|
|
|
|
Unfortunately there is a problem with this version: if we were to call it like this:
|
|
|
|
boost::multiprecision::cpp_dec_float_50 v(2), z(0.5);
|
|
JEL3(v + 0.5, z);
|
|
|
|
Then we would get a long and inscrutable error message from the compiler: the problem here is that the first
|
|
argument to `JEL3` is not a number type, but an expression template. We could obviously add a typecast to
|
|
fix the issue:
|
|
|
|
JEL(cpp_dec_float_50(v + 0.5), z);
|
|
|
|
However, if we want the function JEL to be truly reusable, then a better solution might be preferred.
|
|
To achieve this we can borrow some code from Boost.Math which calculates the return type of mixed-argument
|
|
functions, here's how the new code looks now:
|
|
|
|
*/
|
|
|
|
template <class Float1, class Float2>
|
|
typename boost::math::tools::promote_args<Float1, Float2>::type
|
|
JEL4(Float1 v, Float2 z)
|
|
{
|
|
using std::pow;
|
|
return boost::math::tgamma(v + 1) * boost::math::cyl_bessel_j(v, z) / pow(z / 2, v);
|
|
}
|
|
|
|
/*`
|
|
|
|
As you can see the two arguments to the function are now separate template types, and
|
|
the return type is computed using the `promote_args` metafunction from Boost.Math.
|
|
|
|
Now we can call:
|
|
|
|
std::cout << std::scientific << std::setprecision(std::numeric_limits<cpp_dec_float_100>::digits10);
|
|
std::cout << JEL4(cpp_dec_float_100(2) + 0.5, cpp_dec_float_100(0.5)) << std::endl;
|
|
|
|
And get 100 digits of output:
|
|
|
|
[pre 9.8226639647960475701733500979688283399590376257717309069410413822165082248153638454147004236848917775e-01]
|
|
|
|
As a bonus, we can now call the function not just with expression templates, but with other mixed types as well:
|
|
for example `float` and `double` or `int` and `double`, and the correct return type will be computed in each case.
|
|
|
|
Note that while in this case we didn't have to change the body of the function, in the general case
|
|
any function like this which creates local variables internally would have to use `promote_args`
|
|
to work out what type those variables should be, for example:
|
|
|
|
template <class Float1, class Float2>
|
|
typename boost::math::tools::promote_args<Float1, Float2>::type
|
|
JEL5(Float1 v, Float2 z)
|
|
{
|
|
using std::pow;
|
|
typedef typename boost::math::tools::promote_args<Float1, Float2>::type variable_type;
|
|
variable_type t = pow(z / 2, v);
|
|
return boost::math::tgamma(v + 1) * boost::math::cyl_bessel_j(v, z) / t;
|
|
}
|
|
|
|
*/
|
|
|
|
//]
|
|
|
|
//[ND1
|
|
|
|
/*`
|
|
In this example we'll add even more power to generic numeric programming using not only different
|
|
floating-point types but also function objects as template parameters. Consider
|
|
some well-known central difference rules for numerically computing the first derivative
|
|
of a function ['f[prime](x)] with ['x [isin] [real]]:
|
|
|
|
[equation floating_point_eg1]
|
|
|
|
Where the difference terms ['m[sub n]] are given by:
|
|
|
|
[equation floating_point_eg2]
|
|
|
|
and ['dx] is the step-size of the derivative.
|
|
|
|
The third formula in Equation 1 is a three-point central difference rule. It calculates
|
|
the first derivative of ['f[prime](x)] to ['O(dx[super 6])], where ['dx] is the given step-size.
|
|
For example, if
|
|
the step-size is 0.01 this derivative calculation has about 6 decimal digits of precision -
|
|
just about right for the 7 decimal digits of single-precision float.
|
|
Let's make a generic template subroutine using this three-point central difference
|
|
rule. In particular:
|
|
*/
|
|
|
|
template<typename value_type, typename function_type>
|
|
value_type derivative(const value_type x, const value_type dx, function_type func)
|
|
{
|
|
// Compute d/dx[func(*first)] using a three-point
|
|
// central difference rule of O(dx^6).
|
|
|
|
const value_type dx1 = dx;
|
|
const value_type dx2 = dx1 * 2;
|
|
const value_type dx3 = dx1 * 3;
|
|
|
|
const value_type m1 = (func(x + dx1) - func(x - dx1)) / 2;
|
|
const value_type m2 = (func(x + dx2) - func(x - dx2)) / 4;
|
|
const value_type m3 = (func(x + dx3) - func(x - dx3)) / 6;
|
|
|
|
const value_type fifteen_m1 = 15 * m1;
|
|
const value_type six_m2 = 6 * m2;
|
|
const value_type ten_dx1 = 10 * dx1;
|
|
|
|
return ((fifteen_m1 - six_m2) + m3) / ten_dx1;
|
|
}
|
|
|
|
/*`The `derivative()` template function can be used to compute the first derivative
|
|
of any function to ['O(dx[super 6])]. For example, consider the first derivative of ['sin(x)] evaluated
|
|
at ['x = [pi]/3]. In other words,
|
|
|
|
[equation floating_point_eg3]
|
|
|
|
The code below computes the derivative in Equation 3 for float, double and boost's
|
|
multiple-precision type cpp_dec_float_50.
|
|
*/
|
|
|
|
//]
|
|
|
|
//[GI1
|
|
|
|
/*`
|
|
Similar to the generic derivative example, we can calculate integrals in a similar manner:
|
|
*/
|
|
|
|
template<typename value_type, typename function_type>
|
|
inline value_type integral(const value_type a,
|
|
const value_type b,
|
|
const value_type tol,
|
|
function_type func)
|
|
{
|
|
unsigned n = 1U;
|
|
|
|
value_type h = (b - a);
|
|
value_type I = (func(a) + func(b)) * (h / 2);
|
|
|
|
for(unsigned k = 0U; k < 8U; k++)
|
|
{
|
|
h /= 2;
|
|
|
|
value_type sum(0);
|
|
for(unsigned j = 1U; j <= n; j++)
|
|
{
|
|
sum += func(a + (value_type((j * 2) - 1) * h));
|
|
}
|
|
|
|
const value_type I0 = I;
|
|
I = (I / 2) + (h * sum);
|
|
|
|
const value_type ratio = I0 / I;
|
|
const value_type delta = ratio - 1;
|
|
const value_type delta_abs = ((delta < 0) ? -delta : delta);
|
|
|
|
if((k > 1U) && (delta_abs < tol))
|
|
{
|
|
break;
|
|
}
|
|
|
|
n *= 2U;
|
|
}
|
|
|
|
return I;
|
|
}
|
|
|
|
/*`
|
|
The following sample program shows how the function can be called, we begin
|
|
by defining a function object, which when integrated should yield the Bessel J
|
|
function:
|
|
*/
|
|
|
|
template<typename value_type>
|
|
class cyl_bessel_j_integral_rep
|
|
{
|
|
public:
|
|
cyl_bessel_j_integral_rep(const unsigned N,
|
|
const value_type& X) : n(N), x(X) { }
|
|
|
|
value_type operator()(const value_type& t) const
|
|
{
|
|
// pi * Jn(x) = Int_0^pi [cos(x * sin(t) - n*t) dt]
|
|
return cos(x * sin(t) - (n * t));
|
|
}
|
|
|
|
private:
|
|
const unsigned n;
|
|
const value_type x;
|
|
};
|
|
|
|
|
|
//]
|
|
|
|
//[POLY
|
|
|
|
/*`
|
|
In this example we'll look at polynomial evaluation, this is not only an important
|
|
use case, but it's one that `number` performs particularly well at because the
|
|
expression templates ['completely eliminate all temporaries] from a
|
|
[@http://en.wikipedia.org/wiki/Horner%27s_method Horner polynomial
|
|
evaluation scheme].
|
|
|
|
The following code evaluates `sin(x)` as a polynomial, accurate to at least 64 decimal places:
|
|
|
|
*/
|
|
|
|
using boost::multiprecision::cpp_dec_float;
|
|
typedef boost::multiprecision::number<cpp_dec_float<64> > mp_type;
|
|
|
|
mp_type mysin(const mp_type& x)
|
|
{
|
|
// Approximation of sin(x * pi/2) for -1 <= x <= 1, using an order 63 polynomial.
|
|
static const std::array<mp_type, 32U> coefs =
|
|
{{
|
|
mp_type("+1.5707963267948966192313216916397514420985846996875529104874722961539082031431044993140174126711"), //"),
|
|
mp_type("-0.64596409750624625365575656389794573337969351178927307696134454382929989411386887578263960484"), // ^3
|
|
mp_type("+0.07969262624616704512050554949047802252091164235106119545663865720995702920146198554317279"), // ^5
|
|
mp_type("-0.0046817541353186881006854639339534378594950280185010575749538605102665157913157426229824"), // ^7
|
|
mp_type("+0.00016044118478735982187266087016347332970280754062061156858775174056686380286868007443"), // ^9
|
|
mp_type("-3.598843235212085340458540018208389404888495232432127661083907575106196374913134E-6"), // ^11
|
|
mp_type("+5.692172921967926811775255303592184372902829756054598109818158853197797542565E-8"), // ^13
|
|
mp_type("-6.688035109811467232478226335783138689956270985704278659373558497256423498E-10"), // ^15
|
|
mp_type("+6.066935731106195667101445665327140070166203261129845646380005577490472E-12"), // ^17
|
|
mp_type("-4.377065467313742277184271313776319094862897030084226361576452003432E-14"), // ^19
|
|
mp_type("+2.571422892860473866153865950420487369167895373255729246889168337E-16"), // ^21
|
|
mp_type("-1.253899540535457665340073300390626396596970180355253776711660E-18"), // ^23
|
|
mp_type("+5.15645517658028233395375998562329055050964428219501277474E-21"), // ^25
|
|
mp_type("-1.812399312848887477410034071087545686586497030654642705E-23"), // ^27
|
|
mp_type("+5.50728578652238583570585513920522536675023562254864E-26"), // ^29
|
|
mp_type("-1.461148710664467988723468673933026649943084902958E-28"), // ^31
|
|
mp_type("+3.41405297003316172502972039913417222912445427E-31"), // ^33
|
|
mp_type("-7.07885550810745570069916712806856538290251E-34"), // ^35
|
|
mp_type("+1.31128947968267628970845439024155655665E-36"), // ^37
|
|
mp_type("-2.18318293181145698535113946654065918E-39"), // ^39
|
|
mp_type("+3.28462680978498856345937578502923E-42"), // ^41
|
|
mp_type("-4.48753699028101089490067137298E-45"), // ^43
|
|
mp_type("+5.59219884208696457859353716E-48"), // ^45
|
|
mp_type("-6.38214503973500471720565E-51"), // ^47
|
|
mp_type("+6.69528558381794452556E-54"), // ^49
|
|
mp_type("-6.47841373182350206E-57"), // ^51
|
|
mp_type("+5.800016389666445E-60"), // ^53
|
|
mp_type("-4.818507347289E-63"), // ^55
|
|
mp_type("+3.724683686E-66"), // ^57
|
|
mp_type("-2.6856479E-69"), // ^59
|
|
mp_type("+1.81046E-72"), // ^61
|
|
mp_type("-1.133E-75"), // ^63
|
|
}};
|
|
|
|
const mp_type v = x * 2 / boost::math::constants::pi<mp_type>();
|
|
const mp_type x2 = (v * v);
|
|
//
|
|
// Polynomial evaluation follows, if mp_type allocates memory then
|
|
// just one such allocation occurs - to initialize the variable "sum" -
|
|
// and no temporaries are created at all.
|
|
//
|
|
const mp_type sum = ((((((((((((((((((((((((((((((( + coefs[31U]
|
|
* x2 + coefs[30U])
|
|
* x2 + coefs[29U])
|
|
* x2 + coefs[28U])
|
|
* x2 + coefs[27U])
|
|
* x2 + coefs[26U])
|
|
* x2 + coefs[25U])
|
|
* x2 + coefs[24U])
|
|
* x2 + coefs[23U])
|
|
* x2 + coefs[22U])
|
|
* x2 + coefs[21U])
|
|
* x2 + coefs[20U])
|
|
* x2 + coefs[19U])
|
|
* x2 + coefs[18U])
|
|
* x2 + coefs[17U])
|
|
* x2 + coefs[16U])
|
|
* x2 + coefs[15U])
|
|
* x2 + coefs[14U])
|
|
* x2 + coefs[13U])
|
|
* x2 + coefs[12U])
|
|
* x2 + coefs[11U])
|
|
* x2 + coefs[10U])
|
|
* x2 + coefs[9U])
|
|
* x2 + coefs[8U])
|
|
* x2 + coefs[7U])
|
|
* x2 + coefs[6U])
|
|
* x2 + coefs[5U])
|
|
* x2 + coefs[4U])
|
|
* x2 + coefs[3U])
|
|
* x2 + coefs[2U])
|
|
* x2 + coefs[1U])
|
|
* x2 + coefs[0U])
|
|
* v;
|
|
|
|
return sum;
|
|
}
|
|
|
|
/*`
|
|
Calling the function like so:
|
|
|
|
mp_type pid4 = boost::math::constants::pi<mp_type>() / 4;
|
|
std::cout << std::setprecision(std::numeric_limits< ::mp_type>::digits10) << std::scientific;
|
|
std::cout << mysin(pid4) << std::endl;
|
|
|
|
Yields the expected output:
|
|
|
|
[pre 7.0710678118654752440084436210484903928483593768847403658833986900e-01]
|
|
|
|
*/
|
|
|
|
//]
|
|
|
|
|
|
int main()
|
|
{
|
|
using namespace boost::multiprecision;
|
|
std::cout << std::scientific << std::setprecision(std::numeric_limits<double>::digits10);
|
|
std::cout << JEL1(2.5, 0.5) << std::endl;
|
|
std::cout << std::scientific << std::setprecision(std::numeric_limits<cpp_dec_float_50>::digits10);
|
|
std::cout << JEL2(cpp_dec_float_50(2.5), cpp_dec_float_50(0.5)) << std::endl;
|
|
std::cout << std::scientific << std::setprecision(std::numeric_limits<double>::digits10);
|
|
std::cout << JEL3(2.5, 0.5) << std::endl;
|
|
std::cout << std::scientific << std::setprecision(std::numeric_limits<cpp_dec_float_50>::digits10);
|
|
std::cout << JEL3(cpp_dec_float_50(2.5), cpp_dec_float_50(0.5)) << std::endl;
|
|
std::cout << std::scientific << std::setprecision(std::numeric_limits<cpp_dec_float_100>::digits10);
|
|
std::cout << JEL4(cpp_dec_float_100(2) + 0.5, cpp_dec_float_100(0.5)) << std::endl;
|
|
|
|
//[AOS2
|
|
|
|
/*=#include <iostream>
|
|
#include <iomanip>
|
|
#include <boost/multiprecision/cpp_dec_float.hpp>
|
|
|
|
using boost::multiprecision::cpp_dec_float_50;
|
|
|
|
int main(int, char**)
|
|
{*/
|
|
const float r_f(float(123) / 100);
|
|
const float a_f = area_of_a_circle(r_f);
|
|
|
|
const double r_d(double(123) / 100);
|
|
const double a_d = area_of_a_circle(r_d);
|
|
|
|
const cpp_dec_float_50 r_mp(cpp_dec_float_50(123) / 100);
|
|
const cpp_dec_float_50 a_mp = area_of_a_circle(r_mp);
|
|
|
|
// 4.75292
|
|
std::cout
|
|
<< std::setprecision(std::numeric_limits<float>::digits10)
|
|
<< a_f
|
|
<< std::endl;
|
|
|
|
// 4.752915525616
|
|
std::cout
|
|
<< std::setprecision(std::numeric_limits<double>::digits10)
|
|
<< a_d
|
|
<< std::endl;
|
|
|
|
// 4.7529155256159981904701331745635599135018975843146
|
|
std::cout
|
|
<< std::setprecision(std::numeric_limits<cpp_dec_float_50>::digits10)
|
|
<< a_mp
|
|
<< std::endl;
|
|
/*=}*/
|
|
|
|
//]
|
|
|
|
//[ND2
|
|
/*=
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <boost/multiprecision/cpp_dec_float.hpp>
|
|
#include <boost/math/constants/constants.hpp>
|
|
|
|
|
|
int main(int, char**)
|
|
{*/
|
|
using boost::math::constants::pi;
|
|
using boost::multiprecision::cpp_dec_float_50;
|
|
//
|
|
// We'll pass a function pointer for the function object passed to derivative,
|
|
// the typecast is needed to select the correct overload of std::sin:
|
|
//
|
|
const float d_f = derivative(
|
|
pi<float>() / 3,
|
|
0.01F,
|
|
static_cast<float(*)(float)>(std::sin)
|
|
);
|
|
|
|
const double d_d = derivative(
|
|
pi<double>() / 3,
|
|
0.001,
|
|
static_cast<double(*)(double)>(std::sin)
|
|
);
|
|
//
|
|
// In the cpp_dec_float_50 case, the sin function is multiply overloaded
|
|
// to handle expression templates etc. As a result it's hard to take its
|
|
// address without knowing about its implementation details. We'll use a
|
|
// C++11 lambda expression to capture the call.
|
|
// We also need a typecast on the first argument so we don't accidentally pass
|
|
// an expression template to a template function:
|
|
//
|
|
const cpp_dec_float_50 d_mp = derivative(
|
|
cpp_dec_float_50(pi<cpp_dec_float_50>() / 3),
|
|
cpp_dec_float_50(1.0E-9),
|
|
[](const cpp_dec_float_50& x) -> cpp_dec_float_50
|
|
{
|
|
return sin(x);
|
|
}
|
|
);
|
|
|
|
// 5.000029e-001
|
|
std::cout
|
|
<< std::setprecision(std::numeric_limits<float>::digits10)
|
|
<< d_f
|
|
<< std::endl;
|
|
|
|
// 4.999999999998876e-001
|
|
std::cout
|
|
<< std::setprecision(std::numeric_limits<double>::digits10)
|
|
<< d_d
|
|
<< std::endl;
|
|
|
|
// 4.99999999999999999999999999999999999999999999999999e-01
|
|
std::cout
|
|
<< std::setprecision(std::numeric_limits<cpp_dec_float_50>::digits10)
|
|
<< d_mp
|
|
<< std::endl;
|
|
//=}
|
|
|
|
/*`
|
|
The expected value of the derivative is 0.5. This central difference rule in this
|
|
example is ill-conditioned, meaning it suffers from slight loss of precision. With that
|
|
in mind, the results agree with the expected value of 0.5.*/
|
|
|
|
//]
|
|
|
|
//[ND3
|
|
|
|
/*`
|
|
We can take this a step further and use our derivative function to compute
|
|
a partial derivative. For example if we take the incomplete gamma function
|
|
['P(a, z)], and take the derivative with respect to /z/ at /(2,2)/ then we
|
|
can calculate the result as shown below, for good measure we'll compare with
|
|
the "correct" result obtained from a call to ['gamma_p_derivative], the results
|
|
agree to approximately 44 digits:
|
|
*/
|
|
|
|
cpp_dec_float_50 gd = derivative(
|
|
cpp_dec_float_50(2),
|
|
cpp_dec_float_50(1.0E-9),
|
|
[](const cpp_dec_float_50& x) ->cpp_dec_float_50
|
|
{
|
|
return boost::math::gamma_p(2, x);
|
|
}
|
|
);
|
|
// 2.70670566473225383787998989944968806815263091819151e-01
|
|
std::cout
|
|
<< std::setprecision(std::numeric_limits<cpp_dec_float_50>::digits10)
|
|
<< gd
|
|
<< std::endl;
|
|
// 2.70670566473225383787998989944968806815253190143120e-01
|
|
std::cout << boost::math::gamma_p_derivative(cpp_dec_float_50(2), cpp_dec_float_50(2)) << std::endl;
|
|
//]
|
|
|
|
//[GI2
|
|
|
|
/* The function can now be called as follows: */
|
|
/*=int main(int, char**)
|
|
{*/
|
|
using boost::math::constants::pi;
|
|
typedef boost::multiprecision::cpp_dec_float_50 mp_type;
|
|
|
|
const float j2_f =
|
|
integral(0.0F,
|
|
pi<float>(),
|
|
0.01F,
|
|
cyl_bessel_j_integral_rep<float>(2U, 1.23F)) / pi<float>();
|
|
|
|
const double j2_d =
|
|
integral(0.0,
|
|
pi<double>(),
|
|
0.0001,
|
|
cyl_bessel_j_integral_rep<double>(2U, 1.23)) / pi<double>();
|
|
|
|
const mp_type j2_mp =
|
|
integral(mp_type(0),
|
|
pi<mp_type>(),
|
|
mp_type(1.0E-20),
|
|
cyl_bessel_j_integral_rep<mp_type>(2U, mp_type(123) / 100)) / pi<mp_type>();
|
|
|
|
// 0.166369
|
|
std::cout
|
|
<< std::setprecision(std::numeric_limits<float>::digits10)
|
|
<< j2_f
|
|
<< std::endl;
|
|
|
|
// 0.166369383786814
|
|
std::cout
|
|
<< std::setprecision(std::numeric_limits<double>::digits10)
|
|
<< j2_d
|
|
<< std::endl;
|
|
|
|
// 0.16636938378681407351267852431513159437103348245333
|
|
std::cout
|
|
<< std::setprecision(std::numeric_limits<mp_type>::digits10)
|
|
<< j2_mp
|
|
<< std::endl;
|
|
|
|
//
|
|
// Print true value for comparison:
|
|
// 0.166369383786814073512678524315131594371033482453329
|
|
std::cout << boost::math::cyl_bessel_j(2, mp_type(123) / 100) << std::endl;
|
|
//=}
|
|
|
|
//]
|
|
|
|
std::cout << std::setprecision(std::numeric_limits< ::mp_type>::digits10) << std::scientific;
|
|
std::cout << mysin(boost::math::constants::pi< ::mp_type>() / 4) << std::endl;
|
|
std::cout << boost::multiprecision::sin(boost::math::constants::pi< ::mp_type>() / 4) << std::endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
|
|
Program output:
|
|
|
|
9.822663964796047e-001
|
|
9.82266396479604757017335009796882833995903762577173e-01
|
|
9.822663964796047e-001
|
|
9.82266396479604757017335009796882833995903762577173e-01
|
|
9.8226639647960475701733500979688283399590376257717309069410413822165082248153638454147004236848917775e-01
|
|
4.752916e+000
|
|
4.752915525615998e+000
|
|
4.75291552561599819047013317456355991350189758431460e+00
|
|
5.000029e-001
|
|
4.999999999998876e-001
|
|
4.99999999999999999999999999999999999999999999999999e-01
|
|
2.70670566473225383787998989944968806815263091819151e-01
|
|
2.70670566473225383787998989944968806815253190143120e-01
|
|
7.0710678118654752440084436210484903928483593768847403658833986900e-01
|
|
7.0710678118654752440084436210484903928483593768847403658833986900e-01
|
|
*/
|
|
|
|
#else
|
|
|
|
int main() { return 0; }
|
|
|
|
#endif
|