182 lines
7.7 KiB
C++
182 lines
7.7 KiB
C++
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt
|
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
// Copyright Paul A. Bristow 2019.
|
|
// Copyright Christopher Kormanyos 2012.
|
|
// Copyright John Maddock 2012.
|
|
|
|
// This file is written to be included from a Quickbook .qbk document.
|
|
// It can be compiled by the C++ compiler, and run. Any output can
|
|
// also be added here as comment or included or pasted in elsewhere.
|
|
// Caution: this file contains Quickbook markup as well as code
|
|
// and comments: don't change any of the special comment markups!
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning (disable : 4512) // assignment operator could not be generated.
|
|
# pragma warning (disable : 4996)
|
|
#endif
|
|
|
|
//[big_seventh_example_1
|
|
|
|
/*`[h5 Using Boost.Multiprecision `cpp_float` types for numerical calculations with higher precision than __fundamental `long double`.]
|
|
|
|
The Boost.Multiprecision library can be used for computations requiring precision
|
|
exceeding that of standard __fundamental types such as `float`, `double`
|
|
and `long double`. For extended-precision calculations, Boost.Multiprecision
|
|
supplies several template data types called `cpp_bin_float_`.
|
|
|
|
The number of decimal digits of precision is fixed at compile-time via template parameter.
|
|
|
|
To use these floating-point types and
|
|
[@https://www.boost.org/doc/libs/release/libs/math/doc/html/constants.html Boost.Math collection of high-precision constants],
|
|
we need some includes:
|
|
*/
|
|
|
|
#include <boost/math/constants/constants.hpp>
|
|
|
|
#include <boost/multiprecision/cpp_bin_float.hpp>
|
|
// that includes some predefined typedefs like:
|
|
// using boost::multiprecision::cpp_bin_float_quad;
|
|
// using boost::multiprecision::cpp_bin_float_50;
|
|
// using boost::multiprecision::cpp_bin_float_100;
|
|
|
|
#include <iostream>
|
|
#include <limits>
|
|
|
|
/*` So now we can demonstrate with some trivial calculations:
|
|
*/
|
|
|
|
//] //[big_seventh_example_1]
|
|
|
|
int main()
|
|
{
|
|
|
|
//[big_seventh_example_2
|
|
/*`Using a `typedef` like `cpp_bin_float_50` hides the complexity of multiprecision, and
|
|
allows us to define variables with 50 decimal digit precision just like __fundamental `double`.
|
|
*/
|
|
using boost::multiprecision::cpp_bin_float_50;
|
|
|
|
cpp_bin_float_50 seventh = cpp_bin_float_50(1) / 7; // 1 / 7
|
|
|
|
/*`By default, output would only show the standard 6 decimal digits,
|
|
so set precision to show all 50 significant digits, including any trailing zeros (to show the full implied 50 digit precision).
|
|
*/
|
|
std::cout.precision(std::numeric_limits<cpp_bin_float_50>::digits10); // Show 50 decimal digit precision.
|
|
std::cout << std::showpoint << std::endl; // Append any trailing zeros.
|
|
std::cout << seventh << std::endl;
|
|
/*`which outputs:
|
|
|
|
0.14285714285714285714285714285714285714285714285714
|
|
|
|
We can also use Boost.Math __math_constants like [pi],
|
|
guaranteed to be initialized with the very last bit of precision for the floating-point type.
|
|
*/
|
|
std::cout << "pi = " << boost::math::constants::pi<cpp_bin_float_50>() << std::endl;
|
|
cpp_bin_float_50 circumference = boost::math::constants::pi<cpp_bin_float_50>() * 2 * seventh;
|
|
std::cout << "c = "<< circumference << std::endl;
|
|
|
|
/*`which outputs
|
|
|
|
pi = 3.1415926535897932384626433832795028841971693993751
|
|
|
|
c = 0.89759790102565521098932668093700082405633411410717
|
|
*/
|
|
//] [/big_seventh_example_2]
|
|
|
|
//[big_seventh_example_3
|
|
/*`So using `cpp_bin_float_50` looks like a simple 'drop-in' for the __fundamental_type like 'double',
|
|
but beware of less-than-expected precision from construction or conversion from `double` or other lower precision types.
|
|
This is a mistake that is very easy to make,
|
|
and very difficult to detect because the difference in precision is only visible after about the 17th decimal digit.
|
|
|
|
We can show this by constructing a fraction one seventh from `double`:
|
|
*/
|
|
cpp_bin_float_50 seventh_0 = cpp_bin_float_50(1/7); // Avoid the schoolboy-error `double d7 = 1 / 7;` giving zero!
|
|
std::cout << "seventh_0 = " << seventh_0 << std::endl;
|
|
// seventh_double0 = 0.0000000000000000000000000000000000000000000000000
|
|
|
|
cpp_bin_float_50 seventh_double = cpp_bin_float_50(1./7); // Construct from double! (0.14285714285714)
|
|
std::cout << "seventh_double = " << seventh_double << std::endl; // Boost.Multiprecision post-school error!
|
|
// seventh_double = 0.14285714285714284921269268124888185411691665649414
|
|
|
|
/*`Did you spot the probably-unintended difference? After the 17th decimal digit, result is apparently random
|
|
and not the expected recurring pattern 14285714285714...
|
|
|
|
The 'random' digits after digit 17 are from the `cpp_bin_float_50` representation of the `double` value 0.14285714285714
|
|
which is different from the 'better' `cpp_bin_float_50` representation of the fraction 1/7
|
|
*/
|
|
|
|
cpp_bin_float_50 seventh_big(1); // 1
|
|
seventh_big /= 7;
|
|
std::cout << "seventh_big = " << seventh_big << std::endl; //
|
|
// seventh_big = 0.14285714285714285714285714285714285714285714285714
|
|
//`Note the recurring 14285714285714 pattern as expected.
|
|
|
|
//`We can also construct a `const` version (but not yet `constexpr`) and evaluate in a single expression:
|
|
|
|
const cpp_bin_float_50 seventh_const (cpp_bin_float_50(1) / 7);
|
|
std::cout << "seventh_const = " << seventh_const << std::endl; //
|
|
// seventh_const = 0.14285714285714285714285714285714285714285714285714
|
|
//] [/big_seventh_example_3]
|
|
|
|
//[big_seventh_example_constexpr
|
|
|
|
// Sadly we cannot (yet) write:
|
|
// constexpr cpp_bin_float_50 any_constexpr(0);
|
|
|
|
// constexpr cpp_bin_float_50 seventh_constexpr (cpp_bin_float_50(1) / 7);
|
|
// std::cout << "seventh_constexpr = " << seventh_constexpr << std::endl; //
|
|
// nor use the macro constexpr unless it returns `const`
|
|
// constexpr cpp_bin_float_50 seventh_constexpr(seventh_const);
|
|
|
|
//] [/big_seventh_example_constexpr]
|
|
|
|
//[big_seventh_example_4
|
|
/*`For some purposes, this difference in precision may be insignificant,
|
|
but if one is implementing a formula involving a fraction from integers,
|
|
including decimal fractions like 1/10, 1/100, then comparison with other computations like __WolframAlpha
|
|
will reveal differences whose cause may be perplexing.
|
|
|
|
To get as precise-as-possible decimal fractions like 1.234, we can write
|
|
*/
|
|
|
|
const cpp_bin_float_50 f1(cpp_bin_float_50(1234) / 1000); // Construct from a fraction.
|
|
std::cout << "cpp_bin_float_50 f1(cpp_bin_float_50(1234) / 1000) = " << f1 << std::endl; // cpp_bin_float_50 f1(cpp_bin_float_50(1234) / 1000) = 1.2340000000000000000000000000000000000000000000000
|
|
/*`or
|
|
*/
|
|
const cpp_bin_float_50 f2("1.234"); // Construct from decimal digit string.
|
|
std::cout << "cpp_bin_float_50 f2(\"1.234\") = " << f2 << std::endl; // cpp_bin_float_50 f2("1.234") = 1.2340000000000000000000000000000000000000000000000
|
|
|
|
/*`that are different from constructing from a `double` with value 1.234
|
|
*/
|
|
const cpp_bin_float_50 f3(cpp_bin_float_50(1.234));
|
|
std::cout << "cpp_bin_float_50 f3(cpp_bin_float_50(1.234)) = " << f3 << std::endl; // 1.2339999999999999857891452847979962825775146484375
|
|
|
|
//] [/big_seventh_example_4]
|
|
|
|
return 0;
|
|
} // int main()
|
|
|
|
|
|
/*
|
|
//[big_seventh_example_output
|
|
|
|
0.14285714285714285714285714285714285714285714285714
|
|
pi = 3.1415926535897932384626433832795028841971693993751
|
|
c = 0.89759790102565521098932668093700082405633411410717
|
|
seventh_0 = 0.0000000000000000000000000000000000000000000000000
|
|
seventh_double = 0.14285714285714284921269268124888185411691665649414
|
|
seventh_big = 0.14285714285714285714285714285714285714285714285714
|
|
seventh_const = 0.14285714285714285714285714285714285714285714285714
|
|
cpp_bin_float_50 f1(cpp_bin_float_50(1234) / 100) = 12.340000000000000000000000000000000000000000000000
|
|
cpp_bin_float_50 f2("1.234") = 1.2340000000000000000000000000000000000000000000000
|
|
cpp_bin_float_50 f3(cpp_bin_float_50(1.234)) = 1.2339999999999999857891452847979962825775146484375
|
|
|
|
//] //[/big_seventh_example_output]
|
|
|
|
*/
|
|
|