boost/libs/mpl/doc/tutorial/implementing.html
2018-01-12 21:47:58 +01:00

269 lines
14 KiB
HTML

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<!-- Copyright Aleksey Gurtovoy 2006. Distributed under the Boost -->
<!-- Software License, Version 1.0. (See accompanying -->
<!-- file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.3.6: http://docutils.sourceforge.net/" />
<title>THE BOOST MPL LIBRARY: Implementing Multiplication</title>
<link rel="stylesheet" href="../style.css" type="text/css" />
</head>
<body class="docframe">
<table class="header"><tr class="header"><td class="header-group navigation-bar"><span class="navigation-group"><a href="./implementing-addition-and.html" class="navigation-link">Prev</a>&nbsp;<a href="./implementing-division.html" class="navigation-link">Next</a></span><span class="navigation-group-separator">&nbsp;|&nbsp;</span><span class="navigation-group"><a href="./implementing-addition-and.html" class="navigation-link">Back</a>&nbsp;<a href="./implementing-division.html" class="navigation-link">Along</a></span><span class="navigation-group-separator">&nbsp;|&nbsp;</span><span class="navigation-group"><a href="./dimensional-analysis.html" class="navigation-link">Up</a>&nbsp;<a href="../index.html" class="navigation-link">Home</a></span><span class="navigation-group-separator">&nbsp;|&nbsp;</span><span class="navigation-group"><a href="./tutorial_toc.html" class="navigation-link">Full TOC</a></span></td>
<td class="header-group page-location"><a href="../index.html" class="navigation-link">Front Page</a> / <a href="./tutorial-metafunctions.html" class="navigation-link">Tutorial: Metafunctions and Higher-Order Metaprogramming</a> / <a href="./dimensional-analysis.html" class="navigation-link">Dimensional Analysis</a> / <a href="./implementing.html" class="navigation-link">Implementing Multiplication</a></td>
</tr></table><div class="header-separator"></div>
<div class="section" id="implementing">
<h1><a class="toc-backref" href="./dimensional-analysis.html#id45" name="implementing">Implementing Multiplication</a></h1>
<p>Multiplication is a bit more complicated than addition and
subtraction. So far, the dimensions of the arguments and results have
all been identical, but when multiplying, the result will usually
have different dimensions from either of the arguments. For
multiplication, the relation:</p>
<blockquote>
(<em>x</em><sup>a</sup>)(<em>x</em><sup>b</sup>) == <em>x</em> <sup>(a + b)</sup></blockquote>
<!-- @litre_translator.line_offset -= 7 -->
<p>implies that the exponents of the result dimensions should be the
sum of corresponding exponents from the argument
dimensions. Division is similar, except that the sum is replaced by
a difference.</p>
<p>To combine corresponding elements from two sequences, we'll use
MPL's <tt class="literal"><span class="pre">transform</span></tt> algorithm. <tt class="literal"><span class="pre">transform</span></tt> is a metafunction
that iterates through two input sequences in parallel, passing an
element from each sequence to an arbitrary binary metafunction, and
placing the result in an output sequence.</p>
<pre class="literal-block">
template &lt;class Sequence1, class Sequence2, class BinaryOperation&gt;
struct transform; // returns a Sequence
</pre>
<p>The signature above should look familiar if you're acquainted with the
STL <tt class="literal"><span class="pre">transform</span></tt> algorithm that accepts two <em>runtime</em> sequences
as inputs:</p>
<pre class="literal-block">
template &lt;
class InputIterator1, class InputIterator2
, class OutputIterator, class BinaryOperation
&gt;
void transform(
InputIterator1 start1, InputIterator2 finish1
, InputIterator2 start2
, OutputIterator result, BinaryOperation func);
</pre>
<!-- @ example.wrap('namespace shield{','}')
compile() -->
<p>Now we just need to pass a <tt class="literal"><span class="pre">BinaryOperation</span></tt> that adds or
subtracts in order to multiply or divide dimensions with
<tt class="literal"><span class="pre">mpl::transform</span></tt>. If you look through the <a class="reference" href="./reference-manual.html">the MPL reference manual</a>, you'll
come across <tt class="literal"><span class="pre">plus</span></tt> and <tt class="literal"><span class="pre">minus</span></tt> metafunctions that do just what
you'd expect:</p>
<pre class="literal-block">
#include &lt;boost/static_assert.hpp&gt;
#include &lt;boost/mpl/plus.hpp&gt;
#include &lt;boost/mpl/int.hpp&gt;
namespace mpl = boost::mpl;
BOOST_STATIC_ASSERT((
mpl::plus&lt;
mpl::int_&lt;2&gt;
, mpl::int_&lt;3&gt;
&gt;::type::value == 5
));
</pre>
<!-- @ compile(pop = None) -->
<div class="sidebar">
<p class="sidebar-title first"><tt class="literal"><span class="pre">BOOST_STATIC_ASSERT</span></tt></p>
<p>is a macro that causes a compilation error if its argument is
false. The double parentheses are required because the C++
preprocessor can't parse templates: it would otherwise be
fooled by the comma into treating the condition as two separate
macro arguments. Unlike its runtime analogue <tt class="literal"><span class="pre">assert(...)</span></tt>,
<tt class="literal"><span class="pre">BOOST_STATIC_ASSERT</span></tt> can also be used at class scope,
allowing us to put assertions in our metafunctions. See
Chapter <a class="reference" href="./resources.html">8</a> for an in-depth discussion.</p>
</div>
<!-- @prefix.append('#include <boost/static_assert.hpp>') -->
<p>At this point it might seem as though we have a solution, but we're
not quite there yet. A naive attempt to apply the <tt class="literal"><span class="pre">transform</span></tt>
algorithm in the implementation of <tt class="literal"><span class="pre">operator*</span></tt> yields a compiler
error:</p>
<pre class="literal-block">
#include &lt;boost/mpl/transform.hpp&gt;
template &lt;class T, class D1, class D2&gt;
quantity&lt;
T
, typename mpl::transform&lt;D1,D2,mpl::plus&gt;::type
&gt;
operator*(quantity&lt;T,D1&gt; x, quantity&lt;T,D2&gt; y) { ... }
</pre>
<!-- @ example.replace('{ ... }',';')
compile('all', pop = 1, expect_error = True)
prefix +=['#include <boost/mpl/transform.hpp>'] -->
<!-- @litre_translator.line_offset -= 7 -->
<p>It fails because the protocol says that metafunction arguments
must be types, and <tt class="literal"><span class="pre">plus</span></tt> is not a type, but a class template.
Somehow we need to make metafunctions like <tt class="literal"><span class="pre">plus</span></tt> fit the
metadata mold.</p>
<p>One natural way to introduce polymorphism between metafunctions and
metadata is to employ the wrapper idiom that gave us polymorphism
between types and integral constants. Instead of a nested integral
constant, we can use a class template nested within a
<strong>metafunction class</strong>:</p>
<pre class="literal-block">
struct plus_f
{
template &lt;class T1, class T2&gt;
struct apply
{
typedef typename mpl::plus&lt;T1,T2&gt;::type type;
};
};
</pre>
<div class="admonition-definition admonition">
<p class="admonition-title first">Definition</p>
<p>A <strong>Metafunction Class</strong> is a class with a publicly accessible
nested metafunction called <tt class="literal"><span class="pre">apply</span></tt>.</p>
</div>
<p>Whereas a metafunction is a template but not a type, a
metafunction class wraps that template within an ordinary
non-templated class, which <em>is</em> a type. Since metafunctions
operate on and return types, a metafunction class can be passed as
an argument to, or returned from, another metafunction.</p>
<p>Finally, we have a <tt class="literal"><span class="pre">BinaryOperation</span></tt> type that we can pass to
<tt class="literal"><span class="pre">transform</span></tt> without causing a compilation error:</p>
<pre class="literal-block">
template &lt;class T, class D1, class D2&gt;
quantity&lt;
T
, typename mpl::transform&lt;D1,D2,<strong>plus_f</strong>&gt;::type // new dimensions
&gt;
operator*(quantity&lt;T,D1&gt; x, quantity&lt;T,D2&gt; y)
{
typedef typename mpl::transform&lt;D1,D2,<strong>plus_f</strong>&gt;::type dim;
return quantity&lt;T,dim&gt;( x.value() * y.value() );
}
</pre>
<p>Now, if we want to compute the force exterted by gravity on a 5 kilogram
laptop computer, that's just the acceleration due to gravity (9.8
m/sec<sup>2</sup>) times the mass of the laptop:</p>
<pre class="literal-block">
quantity&lt;float,mass&gt; m(5.0f);
quantity&lt;float,acceleration&gt; a(9.8f);
std::cout &lt;&lt; &quot;force = &quot; &lt;&lt; (m * a).value();
</pre>
<!-- @example.wrap('#include <iostream>\nvoid ff() {', '}')
compile('all', pop = 1) -->
<p>Our <tt class="literal"><span class="pre">operator*</span></tt> multiplies the runtime values (resulting in
6.0f), and our metaprogram code uses <tt class="literal"><span class="pre">transform</span></tt> to sum the
meta-sequences of fundamental dimension exponents, so that the
result type contains a representation of a new list of exponents,
something like:</p>
<pre class="literal-block">
mpl::vector_c&lt;int,1,1,-2,0,0,0,0&gt;
</pre>
<!-- @example.wrap('''
#include <boost/mpl/vector_c.hpp>
typedef''', 'xxxx;')
compile() -->
<!-- @litre_translator.line_offset -= 7 -->
<p>However, if we try to write:</p>
<pre class="literal-block">
quantity&lt;float,force&gt; f = m * a;
</pre>
<!-- @ ma_function_args = '(quantity<float,mass> m, quantity<float,acceleration> a)'
example.wrap('void bogus%s {' % ma_function_args, '}')
compile('all', pop = 1, expect_error = True) -->
<!-- @litre_translator.line_offset -= 7 -->
<p>we'll run into a little problem. Although the result of
<tt class="literal"><span class="pre">m</span> <span class="pre">*</span> <span class="pre">a</span></tt> does indeed represent a force with exponents of mass,
length, and time 1, 1, and -2 respectively, the type returned by
<tt class="literal"><span class="pre">transform</span></tt> isn't a specialization of <tt class="literal"><span class="pre">vector_c</span></tt>. Instead,
<tt class="literal"><span class="pre">transform</span></tt> works generically on the elements of its inputs and
builds a new sequence with the appropriate elements: a type with
many of the same sequence properties as
<tt class="literal"><span class="pre">mpl::vector_c&lt;int,1,1,-2,0,0,0,0&gt;</span></tt>, but with a different C++ type
altogether. If you want to see the type's full name, you can try
to compile the example yourself and look at the error message, but
the exact details aren't important. The point is that
<tt class="literal"><span class="pre">force</span></tt> names a different type, so the assignment above will fail.</p>
<p>In order to resolve the problem, we can add an implicit conversion
from the multiplication's result type to <tt class="literal"><span class="pre">quantity&lt;float,force&gt;</span></tt>.
Since we can't predict the exact types of the dimensions involved
in any computation, this conversion will have to be templated,
something like:</p>
<pre class="literal-block">
template &lt;class T, class Dimensions&gt;
struct quantity
{
// converting constructor
template &lt;class OtherDimensions&gt;
quantity(quantity&lt;T,OtherDimensions&gt; const&amp; rhs)
: m_value(rhs.value())
{
}
...
</pre>
<!-- @ example.append("""
explicit quantity(T x)
: m_value(x)
{}
T value() const { return m_value; }
private:
T m_value;
};""")
stack[quantity_declaration] = example
ignore() -->
<p>Unfortunately, such a general conversion undermines our whole
purpose, allowing nonsense such as:</p>
<pre class="literal-block">
// Should yield a force, not a mass!
quantity&lt;float,mass&gt; bogus = m * a;
</pre>
<!-- @ example.wrap('void bogus2%s {' % ma_function_args, '}')
bogus_example = example
compile('all', pop = 1) -->
<p>We can correct that problem using another MPL algorithm,
<tt class="literal"><span class="pre">equal</span></tt>, which tests that two sequences have the same elements:</p>
<pre class="literal-block">
template &lt;class OtherDimensions&gt;
quantity(quantity&lt;T,OtherDimensions&gt; const&amp; rhs)
: m_value(rhs.value())
{
BOOST_STATIC_ASSERT((
mpl::equal&lt;Dimensions,OtherDimensions&gt;::type::value
));
}
</pre>
<!-- @ example.wrap('''
#include <boost/mpl/equal.hpp>
template <class T, class Dimensions>
struct quantity
{
explicit quantity(T x)
: m_value(x)
{}
T value() const { return m_value; }
''','''
private:
T m_value;
};''')
stack[quantity_declaration] = example
stack[-1] = bogus_example
compile('all', pop = 1, expect_error = True) -->
<p>Now, if the dimensions of the two quantities fail to match, the
assertion will cause a compilation error.</p>
</div>
<div class="footer-separator"></div>
<table class="footer"><tr class="footer"><td class="header-group navigation-bar"><span class="navigation-group"><a href="./implementing-addition-and.html" class="navigation-link">Prev</a>&nbsp;<a href="./implementing-division.html" class="navigation-link">Next</a></span><span class="navigation-group-separator">&nbsp;|&nbsp;</span><span class="navigation-group"><a href="./implementing-addition-and.html" class="navigation-link">Back</a>&nbsp;<a href="./implementing-division.html" class="navigation-link">Along</a></span><span class="navigation-group-separator">&nbsp;|&nbsp;</span><span class="navigation-group"><a href="./dimensional-analysis.html" class="navigation-link">Up</a>&nbsp;<a href="../index.html" class="navigation-link">Home</a></span><span class="navigation-group-separator">&nbsp;|&nbsp;</span><span class="navigation-group"><a href="./tutorial_toc.html" class="navigation-link">Full TOC</a></span></td>
</tr></table></body>
</html>