268 lines
11 KiB
C++
268 lines
11 KiB
C++
// Copyright Paul A. Bristow 2016, 2017, 2018.
|
|
// Copyright John Maddock 2016.
|
|
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt
|
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
// test_lambert_w_integrals.cpp
|
|
//! \brief quadrature tests that cover the whole range of the Lambert W0 function.
|
|
|
|
#include <boost/config.hpp> // for BOOST_MSVC definition etc.
|
|
#include <boost/version.hpp> // for BOOST_MSVC versions.
|
|
|
|
// Boost macros
|
|
#define BOOST_TEST_MAIN
|
|
#define BOOST_LIB_DIAGNOSTIC "on" // Report library file details.
|
|
#include <boost/test/included/unit_test.hpp> // Boost.Test
|
|
// #include <boost/test/unit_test.hpp> // Boost.Test
|
|
#include <boost/test/tools/floating_point_comparison.hpp>
|
|
|
|
#include <boost/array.hpp>
|
|
#include <boost/lexical_cast.hpp>
|
|
#include <boost/type_traits/is_constructible.hpp>
|
|
#include <boost/math/special_functions/fpclassify.hpp> // isnan, isfinite.
|
|
#include <boost/math/special_functions/next.hpp> // float_next, float_prior
|
|
using boost::math::float_next;
|
|
using boost::math::float_prior;
|
|
#include <boost/math/special_functions/ulp.hpp> // ulp
|
|
|
|
#include <boost/math/tools/test_value.hpp> // for create_test_value and macro BOOST_MATH_TEST_VALUE.
|
|
#include <boost/math/policies/policy.hpp>
|
|
using boost::math::policies::digits2;
|
|
using boost::math::policies::digits10;
|
|
#include <boost/math/special_functions/lambert_w.hpp> // For Lambert W lambert_w function.
|
|
using boost::math::lambert_wm1;
|
|
using boost::math::lambert_w0;
|
|
|
|
#include <limits>
|
|
#include <cmath>
|
|
#include <typeinfo>
|
|
#include <iostream>
|
|
#include <type_traits>
|
|
#include <exception>
|
|
|
|
std::string show_versions(void);
|
|
|
|
// Added code and test for Integral of the Lambert W function: by Nick Thompson.
|
|
// https://en.wikipedia.org/wiki/Lambert_W_function#Definite_integrals
|
|
|
|
#include <boost/math/constants/constants.hpp> // for integral tests.
|
|
#include <boost/math/quadrature/tanh_sinh.hpp> // for integral tests.
|
|
#include <boost/math/quadrature/exp_sinh.hpp> // for integral tests.
|
|
|
|
using boost::math::policies::policy;
|
|
using boost::math::policies::make_policy;
|
|
|
|
// using statements needed for changing error handling policy.
|
|
using boost::math::policies::evaluation_error;
|
|
using boost::math::policies::domain_error;
|
|
using boost::math::policies::overflow_error;
|
|
using boost::math::policies::ignore_error;
|
|
using boost::math::policies::throw_on_error;
|
|
|
|
typedef policy<
|
|
domain_error<throw_on_error>,
|
|
overflow_error<ignore_error>
|
|
> no_throw_policy;
|
|
|
|
// Assumes that function has a throw policy, for example:
|
|
// NOT lambert_w0<T>(1 / (x * x), no_throw_policy());
|
|
// Error in function boost::math::quadrature::exp_sinh<double>::integrate:
|
|
// The exp_sinh quadrature evaluated your function at a singular point and resulted in inf.
|
|
// Please ensure your function evaluates to a finite number of its entire domain.
|
|
template <typename T>
|
|
T debug_integration_proc(T x)
|
|
{
|
|
T result; // warning C4701: potentially uninitialized local variable 'result' used
|
|
// T result = 0 ; // But result may not be assigned below?
|
|
try
|
|
{
|
|
// Assign function call to result in here...
|
|
if (x <= sqrt(boost::math::tools::min_value<T>()) )
|
|
{
|
|
result = 0;
|
|
}
|
|
else
|
|
{
|
|
result = lambert_w0<T>(1 / (x * x));
|
|
}
|
|
// result = lambert_w0<T>(1 / (x * x), no_throw_policy()); // Bad idea, less helpful diagnostic message is:
|
|
// Error in function boost::math::quadrature::exp_sinh<double>::integrate:
|
|
// The exp_sinh quadrature evaluated your function at a singular point and resulted in inf.
|
|
// Please ensure your function evaluates to a finite number of its entire domain.
|
|
|
|
} // try
|
|
catch (const std::exception& e)
|
|
{
|
|
std::cout << "Exception " << e.what() << std::endl;
|
|
// set breakpoint here:
|
|
std::cout << "Unexpected exception thrown in integration code at abscissa (x): " << x << "." << std::endl;
|
|
if (!std::isfinite(result))
|
|
{
|
|
// set breakpoint here:
|
|
std::cout << "Unexpected non-finite result in integration code at abscissa (x): " << x << "." << std::endl;
|
|
}
|
|
if (std::isnan(result))
|
|
{
|
|
// set breakpoint here:
|
|
std::cout << "Unexpected non-finite result in integration code at abscissa (x): " << x << "." << std::endl;
|
|
}
|
|
} // catch
|
|
return result;
|
|
} // T debug_integration_proc(T x)
|
|
|
|
template<class Real>
|
|
void test_integrals()
|
|
{
|
|
// Integral of the Lambert W function:
|
|
// https://en.wikipedia.org/wiki/Lambert_W_function
|
|
using boost::math::quadrature::tanh_sinh;
|
|
using boost::math::quadrature::exp_sinh;
|
|
// file:///I:/modular-boost/libs/math/doc/html/math_toolkit/quadrature/double_exponential/de_tanh_sinh.html
|
|
using std::sqrt;
|
|
|
|
std::cout << "Integration of type " << typeid(Real).name() << std::endl;
|
|
|
|
Real tol = std::numeric_limits<Real>::epsilon();
|
|
{ // // Integrate for function lambert_W0(z);
|
|
tanh_sinh<Real> ts;
|
|
Real a = 0;
|
|
Real b = boost::math::constants::e<Real>();
|
|
auto f = [](Real z)->Real
|
|
{
|
|
return lambert_w0<Real>(z);
|
|
};
|
|
Real z = ts.integrate(f, a, b); // OK without any decltype(f)
|
|
BOOST_CHECK_CLOSE_FRACTION(z, boost::math::constants::e<Real>() - 1, tol);
|
|
}
|
|
{
|
|
// Integrate for function lambert_W0(z/(z sqrt(z)).
|
|
exp_sinh<Real> es;
|
|
auto f = [](Real z)->Real
|
|
{
|
|
return lambert_w0<Real>(z)/(z * sqrt(z));
|
|
};
|
|
Real z = es.integrate(f); // OK
|
|
BOOST_CHECK_CLOSE_FRACTION(z, 2 * boost::math::constants::root_two_pi<Real>(), tol);
|
|
}
|
|
{
|
|
// Integrate for function lambert_W0(1/z^2).
|
|
exp_sinh<Real> es;
|
|
//const Real sqrt_min = sqrt(boost::math::tools::min_value<Real>()); // 1.08420217e-19 fo 32-bit float.
|
|
// error C3493: 'sqrt_min' cannot be implicitly captured because no default capture mode has been specified
|
|
auto f = [](Real z)->Real
|
|
{
|
|
if (z <= sqrt(boost::math::tools::min_value<Real>()) )
|
|
{ // Too small would underflow z * z and divide by zero to overflow 1/z^2 for lambert_w0 z parameter.
|
|
return static_cast<Real>(0);
|
|
}
|
|
else
|
|
{
|
|
return lambert_w0<Real>(1 / (z * z)); // warning C4756: overflow in constant arithmetic, even though cannot happen.
|
|
}
|
|
};
|
|
Real z = es.integrate(f);
|
|
BOOST_CHECK_CLOSE_FRACTION(z, boost::math::constants::root_two_pi<Real>(), tol);
|
|
}
|
|
} // template<class Real> void test_integrals()
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE( integrals )
|
|
{
|
|
std::cout << "Macro BOOST_MATH_LAMBERT_W0_INTEGRALS is defined." << std::endl;
|
|
BOOST_TEST_MESSAGE("\nTest Lambert W0 integrals.");
|
|
try
|
|
{
|
|
// using statements needed to change precision policy.
|
|
using boost::math::policies::policy;
|
|
using boost::math::policies::make_policy;
|
|
using boost::math::policies::precision;
|
|
using boost::math::policies::digits2;
|
|
using boost::math::policies::digits10;
|
|
|
|
// using statements needed for changing error handling policy.
|
|
using boost::math::policies::evaluation_error;
|
|
using boost::math::policies::domain_error;
|
|
using boost::math::policies::overflow_error;
|
|
using boost::math::policies::ignore_error;
|
|
using boost::math::policies::throw_on_error;
|
|
|
|
|
|
/*
|
|
typedef policy<
|
|
domain_error<throw_on_error>,
|
|
overflow_error<ignore_error>
|
|
> no_throw_policy;
|
|
|
|
// Experiment with better diagnostics.
|
|
typedef float Real;
|
|
|
|
Real inf = std::numeric_limits<Real>::infinity();
|
|
Real max = (std::numeric_limits<Real>::max)();
|
|
std::cout.precision(std::numeric_limits<Real>::max_digits10);
|
|
//std::cout << "lambert_w0(inf) = " << lambert_w0(inf) << std::endl; // lambert_w0(inf) = 1.79769e+308
|
|
std::cout << "lambert_w0(inf, throw_policy()) = " << lambert_w0(inf, no_throw_policy()) << std::endl; // inf
|
|
std::cout << "lambert_w0(max) = " << lambert_w0(max) << std::endl; // lambert_w0(max) = 703.227
|
|
//std::cout << lambert_w0(inf) << std::endl; // inf - will throw.
|
|
std::cout << "lambert_w0(0) = " << lambert_w0(0.) << std::endl; // 0
|
|
std::cout << "lambert_w0(std::numeric_limits<Real>::denorm_min()) = " << lambert_w0(std::numeric_limits<Real>::denorm_min()) << std::endl; // 4.94066e-324
|
|
std::cout << "lambert_w0(std::numeric_limits<Real>::min()) = " << lambert_w0((std::numeric_limits<Real>::min)()) << std::endl; // 2.22507e-308
|
|
|
|
// Approximate the largest lambert_w you can get for type T?
|
|
float max_w_f = boost::math::lambert_w_detail::lambert_w0_approx((std::numeric_limits<float>::max)()); // Corless equation 4.19, page 349, and Chapeau-Blondeau equation 20, page 2162.
|
|
std::cout << "w max_f " << max_w_f << std::endl; // 84.2879
|
|
Real max_w = boost::math::lambert_w_detail::lambert_w0_approx((std::numeric_limits<Real>::max)()); // Corless equation 4.19, page 349, and Chapeau-Blondeau equation 20, page 2162.
|
|
std::cout << "w max " << max_w << std::endl; // 703.227
|
|
|
|
std::cout << "lambert_w0(7.2416706213544837e-163) = " << lambert_w0(7.2416706213544837e-163) << std::endl; //
|
|
std::cout << "test integral 1/z^2" << std::endl;
|
|
std::cout << "ULP = " << boost::math::ulp(1., policy<digits2<> >()) << std::endl; // ULP = 2.2204460492503131e-16
|
|
std::cout << "ULP = " << boost::math::ulp(1e-10, policy<digits2<> >()) << std::endl; // ULP = 2.2204460492503131e-16
|
|
std::cout << "ULP = " << boost::math::ulp(1., policy<digits2<11> >()) << std::endl; // ULP = 2.2204460492503131e-16
|
|
std::cout << "epsilon = " << std::numeric_limits<Real>::epsilon() << std::endl; //
|
|
std::cout << "sqrt(max) = " << sqrt(boost::math::tools::max_value<float>() ) << std::endl; // sqrt(max) = 1.8446742974197924e+19
|
|
std::cout << "sqrt(min) = " << sqrt(boost::math::tools::min_value<float>() ) << std::endl; // sqrt(min) = 1.0842021724855044e-19
|
|
|
|
|
|
|
|
// Demo debug version.
|
|
Real tol = std::numeric_limits<Real>::epsilon();
|
|
Real x;
|
|
{
|
|
using boost::math::quadrature::exp_sinh;
|
|
exp_sinh<Real> es;
|
|
// Function to be integrated, lambert_w0(1/z^2).
|
|
|
|
//auto f = [](Real z)->Real
|
|
//{ // Naive - no protection against underflow and subsequent divide by zero.
|
|
// return lambert_w0<Real>(1 / (z * z));
|
|
//};
|
|
// Diagnostic is:
|
|
// Error in function boost::math::lambert_w0<Real>: Expected a finite value but got inf
|
|
|
|
auto f = [](Real z)->Real
|
|
{ // Debug with diagnostics for underflow and subsequent divide by zero and other bad things.
|
|
return debug_integration_proc(z);
|
|
};
|
|
// Exception Error in function boost::math::lambert_w0<double>: Expected a finite value but got inf.
|
|
|
|
// Unexpected exception thrown in integration code at abscissa: 7.2416706213544837e-163.
|
|
// Unexpected exception thrown in integration code at abscissa (x): 3.478765835953569e-23.
|
|
x = es.integrate(f);
|
|
std::cout << "es.integrate(f) = " << x << std::endl;
|
|
BOOST_CHECK_CLOSE_FRACTION(x, boost::math::constants::root_two_pi<Real>(), tol);
|
|
// root_two_pi<double = 2.506628274631000502
|
|
}
|
|
*/
|
|
|
|
test_integrals<float>();
|
|
}
|
|
catch (std::exception& ex)
|
|
{
|
|
std::cout << ex.what() << std::endl;
|
|
}
|
|
}
|
|
|