boost/libs/math/test/chebyshev_test.cpp
2021-10-05 21:37:46 +02:00

199 lines
7.6 KiB
C++

/*
* Copyright Nick Thompson, 2017
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include <random>
#include <iostream>
#include <boost/type_index.hpp>
#include <boost/math/special_functions/chebyshev.hpp>
#include <boost/math/special_functions/sinc.hpp>
#include <boost/multiprecision/cpp_bin_float.hpp>
#include <boost/array.hpp>
#include "math_unit_test.hpp"
using boost::multiprecision::cpp_bin_float_quad;
using boost::math::chebyshev_t;
using boost::math::chebyshev_t_prime;
using boost::math::chebyshev_u;
template<class Real>
void test_polynomials()
{
std::cout << "Testing explicit polynomial representations of the Chebyshev polynomials on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
Real x = -2;
Real tol = 32*std::numeric_limits<Real>::epsilon();
while (x < 2)
{
CHECK_MOLLIFIED_CLOSE(chebyshev_t(0, x), Real(1), tol);
CHECK_MOLLIFIED_CLOSE(chebyshev_t(1, x), x, tol);
CHECK_MOLLIFIED_CLOSE(chebyshev_t(2, x), 2*x*x - 1, tol);
CHECK_MOLLIFIED_CLOSE(chebyshev_t(3, x), x*(4*x*x-3), tol);
CHECK_MOLLIFIED_CLOSE(chebyshev_t(4, x), 8*x*x*(x*x - 1) + 1, tol);
CHECK_MOLLIFIED_CLOSE(chebyshev_t(5, x), x*(16*x*x*x*x - 20*x*x + 5), tol);
x += 1/static_cast<Real>(1<<7);
}
x = -2;
while (x < 2)
{
CHECK_MOLLIFIED_CLOSE(chebyshev_u(0, x), Real(1), tol);
CHECK_MOLLIFIED_CLOSE(chebyshev_u(1, x), 2*x, tol);
CHECK_MOLLIFIED_CLOSE(chebyshev_u(2, x), 4*x*x - 1, tol);
CHECK_MOLLIFIED_CLOSE(chebyshev_u(3, x), 4*x*(2*x*x - 1), tol);
x += 1/static_cast<Real>(1<<7);
}
}
template<class Real>
void test_derivatives()
{
std::cout << "Testing explicit polynomial representations of the Chebyshev polynomial derivatives on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
Real x = -2;
Real tol = 4*std::numeric_limits<Real>::epsilon();
while (x < 2)
{
CHECK_MOLLIFIED_CLOSE(chebyshev_t_prime(0, x), Real(0), tol);
CHECK_MOLLIFIED_CLOSE(chebyshev_t_prime(1, x), Real(1), tol);
CHECK_MOLLIFIED_CLOSE(chebyshev_t_prime(2, x), 4*x, tol);
CHECK_MOLLIFIED_CLOSE(chebyshev_t_prime(3, x), 3*(4*x*x - 1), tol);
CHECK_MOLLIFIED_CLOSE(chebyshev_t_prime(4, x), 16*x*(2*x*x - 1), tol);
// This one makes the tolerance have to grow too large; the Chebyshev recurrence is more stable than naive polynomial evaluation anyway.
//BOOST_CHECK_CLOSE_FRACTION(chebyshev_t_prime(5, x), 5*(4*x*x*(4*x*x - 3) + 1), tol);
x += 1/static_cast<Real>(1<<7);
}
}
template<class Real>
void test_clenshaw_recurrence()
{
using boost::math::chebyshev_clenshaw_recurrence;
boost::array<Real, 5> c0 = { {2, 0, 0, 0, 0} };
// Check the size = 1 case:
boost::array<Real, 1> c01 = { {2} };
// Check the size = 2 case:
boost::array<Real, 2> c02 = { {2, 0} };
boost::array<Real, 4> c1 = { {0, 1, 0, 0} };
boost::array<Real, 4> c2 = { {0, 0, 1, 0} };
boost::array<Real, 5> c3 = { {0, 0, 0, 1, 0} };
boost::array<Real, 5> c4 = { {0, 0, 0, 0, 1} };
boost::array<Real, 6> c5 = { {0, 0, 0, 0, 0, 1} };
boost::array<Real, 7> c6 = { {0, 0, 0, 0, 0, 0, 1} };
Real x = -1;
// It's not clear from this test which one is more accurate; higher precision cast testing is required, and is done elsewhere:
int ulps = 50;
while (x <= 1)
{
Real y = chebyshev_clenshaw_recurrence(c0.data(), c0.size(), x);
Real expected = chebyshev_t(0, x);
CHECK_ULP_CLOSE(expected, y, ulps);
y = chebyshev_clenshaw_recurrence(c0.data(), c0.size(), Real(-1), Real(1), x);
CHECK_ULP_CLOSE(expected, y, ulps);
y = chebyshev_clenshaw_recurrence(c01.data(), c01.size(), x);
CHECK_ULP_CLOSE(expected, y, ulps);
y = chebyshev_clenshaw_recurrence(c01.data(), c01.size(), Real(-1), Real(1), x);
CHECK_ULP_CLOSE(expected, y, ulps);
y = chebyshev_clenshaw_recurrence(c02.data(), c02.size(), x);
CHECK_ULP_CLOSE(expected, y, ulps);
y = chebyshev_clenshaw_recurrence(c02.data(), c02.size(), Real(-1), Real(1), x);
CHECK_ULP_CLOSE(expected, y, ulps);
expected = chebyshev_t(1,x);
y = chebyshev_clenshaw_recurrence(c1.data(), c1.size(), x);
CHECK_ULP_CLOSE(expected, y, ulps);
y = chebyshev_clenshaw_recurrence(c1.data(), c1.size(), Real(-1), Real(1), x);
CHECK_ULP_CLOSE(expected, y, ulps);
expected = chebyshev_t(2, x);
y = chebyshev_clenshaw_recurrence(c2.data(), c2.size(), x);
CHECK_ULP_CLOSE(expected, y, ulps);
y = chebyshev_clenshaw_recurrence(c2.data(), c2.size(), Real(-1), Real(1), x);
CHECK_ULP_CLOSE(expected, y, ulps);
expected = chebyshev_t(3, x);
y = chebyshev_clenshaw_recurrence(c3.data(), c3.size(), x);
CHECK_ULP_CLOSE(expected, y, ulps);
y = chebyshev_clenshaw_recurrence(c3.data(), c3.size(), Real(-1), Real(1), x);
CHECK_ULP_CLOSE(expected, y, ulps);
expected = chebyshev_t(4, x);
y = chebyshev_clenshaw_recurrence(c4.data(), c4.size(), x);
CHECK_ULP_CLOSE(expected, y, ulps);
y = chebyshev_clenshaw_recurrence(c4.data(), c4.size(), Real(-1), Real(1), x);
CHECK_ULP_CLOSE(expected, y, ulps);
expected = chebyshev_t(5, x);
y = chebyshev_clenshaw_recurrence(c5.data(), c5.size(), x);
CHECK_ULP_CLOSE(expected, y, ulps);
y = chebyshev_clenshaw_recurrence(c5.data(), c5.size(), Real(-1), Real(1), x);
CHECK_ULP_CLOSE(expected, y, ulps);
expected = chebyshev_t(6, x);
y = chebyshev_clenshaw_recurrence(c6.data(), c6.size(), x);
CHECK_ULP_CLOSE(expected, y, ulps);
y = chebyshev_clenshaw_recurrence(c6.data(), c6.size(), Real(-1), Real(1), x);
CHECK_ULP_CLOSE(expected, y, ulps);
x += static_cast<Real>(1)/static_cast<Real>(1 << 7);
}
}
template<typename Real>
void test_translated_clenshaw_recurrence()
{
using boost::math::chebyshev_clenshaw_recurrence;
std::mt19937_64 mt(123242);
std::uniform_real_distribution<Real> dis(-1,1);
std::vector<Real> c(32);
for (auto & d : c) {
d = dis(mt);
}
int samples = 0;
while (samples++ < 250) {
Real x = dis(mt);
Real expected = chebyshev_clenshaw_recurrence(c.data(), c.size(), x);
// The computed value, in this case, should actually be better, since it has more information to use.
// In any case, this test doesn't show Reinch's modification to the Clenshaw recurrence is better;
// it shows they are doing roughly the same thing.
Real computed = chebyshev_clenshaw_recurrence(c.data(), c.size(), Real(-1), Real(1), x);
if (!CHECK_ULP_CLOSE(expected, computed, 1000)) {
std::cerr << " Problem occured at x = " << x << "\n";
}
}
}
int main()
{
test_polynomials<float>();
test_polynomials<double>();
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_polynomials<long double>();
#endif
test_polynomials<cpp_bin_float_quad>();
test_derivatives<float>();
test_derivatives<double>();
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_derivatives<long double>();
#endif
test_derivatives<cpp_bin_float_quad>();
test_clenshaw_recurrence<float>();
test_clenshaw_recurrence<double>();
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
test_clenshaw_recurrence<long double>();
#endif
test_translated_clenshaw_recurrence<double>();
return boost::math::test::report_errors();
}