430 lines
12 KiB
C++
430 lines
12 KiB
C++
/*
|
|
* Copyright Nick Thompson, 2017
|
|
* Use, modification and distribution are subject to the
|
|
* Boost Software License, Version 1.0. (See accompanying file
|
|
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
*/
|
|
#define BOOST_TEST_MODULE catmull_rom_test
|
|
|
|
#include <array>
|
|
#include <random>
|
|
#include <boost/cstdfloat.hpp>
|
|
#include <boost/type_index.hpp>
|
|
#include <boost/test/included/unit_test.hpp>
|
|
#include <boost/test/tools/floating_point_comparison.hpp>
|
|
#include <boost/math/constants/constants.hpp>
|
|
#include <boost/math/interpolators/catmull_rom.hpp>
|
|
#include <boost/multiprecision/cpp_bin_float.hpp>
|
|
#include <boost/multiprecision/cpp_dec_float.hpp>
|
|
#include <boost/numeric/ublas/vector.hpp>
|
|
|
|
using std::abs;
|
|
using boost::multiprecision::cpp_bin_float_50;
|
|
using boost::math::catmull_rom;
|
|
|
|
template<class Real>
|
|
void test_alpha_distance()
|
|
{
|
|
Real tol = std::numeric_limits<Real>::epsilon();
|
|
std::array<Real, 3> v1 = {0,0,0};
|
|
std::array<Real, 3> v2 = {1,0,0};
|
|
Real alpha = 0.5;
|
|
Real d = boost::math::detail::alpha_distance<std::array<Real, 3>>(v1, v2, alpha);
|
|
BOOST_CHECK_CLOSE_FRACTION(d, 1, tol);
|
|
|
|
d = boost::math::detail::alpha_distance<std::array<Real, 3>>(v1, v2, 0.0);
|
|
BOOST_CHECK_CLOSE_FRACTION(d, 1, tol);
|
|
|
|
d = boost::math::detail::alpha_distance<std::array<Real, 3>>(v1, v2, 1.0);
|
|
BOOST_CHECK_CLOSE_FRACTION(d, 1, tol);
|
|
|
|
v2[0] = 2;
|
|
d = boost::math::detail::alpha_distance<std::array<Real, 3>>(v1, v2, alpha);
|
|
BOOST_CHECK_CLOSE_FRACTION(d, pow(2, (Real)1/ (Real) 2), tol);
|
|
|
|
d = boost::math::detail::alpha_distance<std::array<Real, 3>>(v1, v2, 0.0);
|
|
BOOST_CHECK_CLOSE_FRACTION(d, 1, tol);
|
|
|
|
d = boost::math::detail::alpha_distance<std::array<Real, 3>>(v1, v2, 1.0);
|
|
BOOST_CHECK_CLOSE_FRACTION(d, 2, tol);
|
|
}
|
|
|
|
|
|
template<class Real>
|
|
void test_linear()
|
|
{
|
|
std::cout << "Testing that the Catmull-Rom spline interpolates linear functions correctly on type "
|
|
<< boost::typeindex::type_id<Real>().pretty_name() << "\n";
|
|
|
|
Real tol = 10*std::numeric_limits<Real>::epsilon();
|
|
std::vector<std::array<Real, 3>> v(4);
|
|
v[0] = {0,0,0};
|
|
v[1] = {1,0,0};
|
|
v[2] = {2,0,0};
|
|
v[3] = {3,0,0};
|
|
catmull_rom<std::array<Real, 3>> cr(std::move(v));
|
|
|
|
// Test that the interpolation condition is obeyed:
|
|
BOOST_CHECK_CLOSE_FRACTION(cr.max_parameter(), 3, tol);
|
|
auto p0 = cr(0.0);
|
|
BOOST_CHECK_SMALL(p0[0], tol);
|
|
BOOST_CHECK_SMALL(p0[1], tol);
|
|
BOOST_CHECK_SMALL(p0[2], tol);
|
|
auto p1 = cr(1.0);
|
|
BOOST_CHECK_CLOSE_FRACTION(p1[0], 1, tol);
|
|
BOOST_CHECK_SMALL(p1[1], tol);
|
|
BOOST_CHECK_SMALL(p1[2], tol);
|
|
|
|
auto p2 = cr(2.0);
|
|
BOOST_CHECK_CLOSE_FRACTION(p2[0], 2, tol);
|
|
BOOST_CHECK_SMALL(p2[1], tol);
|
|
BOOST_CHECK_SMALL(p2[2], tol);
|
|
|
|
|
|
auto p3 = cr(3.0);
|
|
BOOST_CHECK_CLOSE_FRACTION(p3[0], 3, tol);
|
|
BOOST_CHECK_SMALL(p3[1], tol);
|
|
BOOST_CHECK_SMALL(p3[2], tol);
|
|
|
|
Real s = cr.parameter_at_point(0);
|
|
BOOST_CHECK_SMALL(s, tol);
|
|
|
|
s = cr.parameter_at_point(1);
|
|
BOOST_CHECK_CLOSE_FRACTION(s, 1, tol);
|
|
|
|
s = cr.parameter_at_point(2);
|
|
BOOST_CHECK_CLOSE_FRACTION(s, 2, tol);
|
|
|
|
s = cr.parameter_at_point(3);
|
|
BOOST_CHECK_CLOSE_FRACTION(s, 3, tol);
|
|
|
|
// Test that the function is linear on the interval [1,2]:
|
|
for (double s = 1; s < 2; s += 0.01)
|
|
{
|
|
auto p = cr(s);
|
|
BOOST_CHECK_CLOSE_FRACTION(p[0], s, tol);
|
|
BOOST_CHECK_SMALL(p[1], tol);
|
|
BOOST_CHECK_SMALL(p[2], tol);
|
|
|
|
auto tangent = cr.prime(s);
|
|
BOOST_CHECK_CLOSE_FRACTION(tangent[0], 1, tol);
|
|
BOOST_CHECK_SMALL(tangent[1], tol);
|
|
BOOST_CHECK_SMALL(tangent[2], tol);
|
|
}
|
|
|
|
}
|
|
|
|
template<class Real>
|
|
void test_circle()
|
|
{
|
|
using boost::math::constants::pi;
|
|
using std::cos;
|
|
using std::sin;
|
|
|
|
std::cout << "Testing that the Catmull-Rom spline interpolates circles correctly on type "
|
|
<< boost::typeindex::type_id<Real>().pretty_name() << "\n";
|
|
|
|
Real tol = 10*std::numeric_limits<Real>::epsilon();
|
|
std::vector<std::array<Real, 2>> v(20*sizeof(Real));
|
|
std::vector<std::array<Real, 2>> u(20*sizeof(Real));
|
|
for (size_t i = 0; i < v.size(); ++i)
|
|
{
|
|
Real theta = ((Real) i/ (Real) v.size())*2*pi<Real>();
|
|
v[i] = {cos(theta), sin(theta)};
|
|
u[i] = v[i];
|
|
}
|
|
catmull_rom<std::array<Real, 2>> circle(std::move(v), true);
|
|
|
|
// Interpolation condition:
|
|
for (size_t i = 0; i < v.size(); ++i)
|
|
{
|
|
Real s = circle.parameter_at_point(i);
|
|
auto p = circle(s);
|
|
Real x = p[0];
|
|
Real y = p[1];
|
|
if (abs(x) < std::numeric_limits<Real>::epsilon())
|
|
{
|
|
BOOST_CHECK_SMALL(u[i][0], tol);
|
|
}
|
|
if (abs(y) < std::numeric_limits<Real>::epsilon())
|
|
{
|
|
BOOST_CHECK_SMALL(u[i][1], tol);
|
|
}
|
|
else
|
|
{
|
|
BOOST_CHECK_CLOSE_FRACTION(x, u[i][0], tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(y, u[i][1], tol);
|
|
}
|
|
}
|
|
|
|
Real max_s = circle.max_parameter();
|
|
for(Real s = 0; s < max_s; s += 0.01)
|
|
{
|
|
auto p = circle(s);
|
|
Real x = p[0];
|
|
Real y = p[1];
|
|
BOOST_CHECK_CLOSE_FRACTION(x*x+y*y, 1, 0.001);
|
|
}
|
|
}
|
|
|
|
|
|
template<class Real, size_t dimension>
|
|
void test_affine_invariance()
|
|
{
|
|
std::cout << "Testing that the Catmull-Rom spline is affine invariant in dimension "
|
|
<< dimension << " on type "
|
|
<< boost::typeindex::type_id<Real>().pretty_name() << "\n";
|
|
|
|
Real tol = 1000*std::numeric_limits<Real>::epsilon();
|
|
std::vector<std::array<Real, dimension>> v(100);
|
|
std::vector<std::array<Real, dimension>> u(100);
|
|
std::mt19937_64 gen(438232);
|
|
Real inv_denom = (Real) 100/( (Real) (gen.max)() + (Real) 2);
|
|
for(size_t j = 0; j < dimension; ++j)
|
|
{
|
|
v[0][j] = gen()*inv_denom;
|
|
u[0][j] = v[0][j];
|
|
}
|
|
|
|
for (size_t i = 1; i < v.size(); ++i)
|
|
{
|
|
for(size_t j = 0; j < dimension; ++j)
|
|
{
|
|
v[i][j] = v[i-1][j] + gen()*inv_denom;
|
|
u[i][j] = v[i][j];
|
|
}
|
|
}
|
|
std::array<Real, dimension> affine_shift;
|
|
for (size_t j = 0; j < dimension; ++j)
|
|
{
|
|
affine_shift[j] = gen()*inv_denom;
|
|
}
|
|
|
|
catmull_rom<std::array<Real, dimension>> cr1(std::move(v));
|
|
|
|
for(size_t i = 0; i< u.size(); ++i)
|
|
{
|
|
for(size_t j = 0; j < dimension; ++j)
|
|
{
|
|
u[i][j] += affine_shift[j];
|
|
}
|
|
}
|
|
|
|
catmull_rom<std::array<Real, dimension>> cr2(std::move(u));
|
|
|
|
BOOST_CHECK_CLOSE_FRACTION(cr1.max_parameter(), cr2.max_parameter(), tol);
|
|
|
|
Real ds = cr1.max_parameter()/1024;
|
|
for (Real s = 0; s < cr1.max_parameter(); s += ds)
|
|
{
|
|
auto p0 = cr1(s);
|
|
auto p1 = cr2(s);
|
|
auto tangent0 = cr1.prime(s);
|
|
auto tangent1 = cr2.prime(s);
|
|
for (size_t j = 0; j < dimension; ++j)
|
|
{
|
|
BOOST_CHECK_CLOSE_FRACTION(p0[j] + affine_shift[j], p1[j], tol);
|
|
if (abs(tangent0[j]) > 5000*tol)
|
|
{
|
|
BOOST_CHECK_CLOSE_FRACTION(tangent0[j], tangent1[j], 5000*tol);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class Real>
|
|
void test_helix()
|
|
{
|
|
using boost::math::constants::pi;
|
|
std::cout << "Testing that the Catmull-Rom spline interpolates helices correctly on type "
|
|
<< boost::typeindex::type_id<Real>().pretty_name() << "\n";
|
|
|
|
Real tol = 0.001;
|
|
std::vector<std::array<Real, 3>> v(400*sizeof(Real));
|
|
for (size_t i = 0; i < v.size(); ++i)
|
|
{
|
|
Real theta = ((Real) i/ (Real) v.size())*2*pi<Real>();
|
|
v[i] = {cos(theta), sin(theta), theta};
|
|
}
|
|
catmull_rom<std::array<Real, 3>> helix(std::move(v));
|
|
|
|
// Interpolation condition:
|
|
for (size_t i = 0; i < v.size(); ++i)
|
|
{
|
|
Real s = helix.parameter_at_point(i);
|
|
auto p = helix(s);
|
|
Real t = p[2];
|
|
|
|
Real x = p[0];
|
|
Real y = p[1];
|
|
if (abs(x) < tol)
|
|
{
|
|
BOOST_CHECK_SMALL(cos(t), tol);
|
|
}
|
|
if (abs(y) < tol)
|
|
{
|
|
BOOST_CHECK_SMALL(sin(t), tol);
|
|
}
|
|
else
|
|
{
|
|
BOOST_CHECK_CLOSE_FRACTION(x, cos(t), tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(y, sin(t), tol);
|
|
}
|
|
}
|
|
|
|
Real max_s = helix.max_parameter();
|
|
for(Real s = helix.parameter_at_point(1); s < max_s; s += 0.01)
|
|
{
|
|
auto p = helix(s);
|
|
Real x = p[0];
|
|
Real y = p[1];
|
|
Real t = p[2];
|
|
BOOST_CHECK_CLOSE_FRACTION(x*x+y*y, (Real) 1, (Real) 0.01);
|
|
if (abs(x) < 0.01)
|
|
{
|
|
BOOST_CHECK_SMALL(cos(t), (Real) 0.05);
|
|
}
|
|
if (abs(y) < 0.01)
|
|
{
|
|
BOOST_CHECK_SMALL(sin(t), (Real) 0.05);
|
|
}
|
|
else
|
|
{
|
|
BOOST_CHECK_CLOSE_FRACTION(x, cos(t), (Real) 0.05);
|
|
BOOST_CHECK_CLOSE_FRACTION(y, sin(t), (Real) 0.05);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template<class Real>
|
|
class mypoint3d
|
|
{
|
|
public:
|
|
// Must define a value_type:
|
|
typedef Real value_type;
|
|
|
|
// Regular constructor:
|
|
mypoint3d(Real x, Real y, Real z)
|
|
{
|
|
m_vec[0] = x;
|
|
m_vec[1] = y;
|
|
m_vec[2] = z;
|
|
}
|
|
|
|
// Must define a default constructor:
|
|
mypoint3d() {}
|
|
|
|
// Must define array access:
|
|
Real operator[](size_t i) const
|
|
{
|
|
return m_vec[i];
|
|
}
|
|
|
|
// Array element assignment:
|
|
Real& operator[](size_t i)
|
|
{
|
|
return m_vec[i];
|
|
}
|
|
|
|
|
|
private:
|
|
std::array<Real, 3> m_vec;
|
|
};
|
|
|
|
|
|
// Must define the free function "size()":
|
|
template<class Real>
|
|
BOOST_CONSTEXPR std::size_t size(const mypoint3d<Real>& c)
|
|
{
|
|
return 3;
|
|
}
|
|
|
|
template<class Real>
|
|
void test_data_representations()
|
|
{
|
|
std::cout << "Testing that the Catmull-Rom spline works with multiple data representations.\n";
|
|
mypoint3d<Real> p0(0.1, 0.2, 0.3);
|
|
mypoint3d<Real> p1(0.2, 0.3, 0.4);
|
|
mypoint3d<Real> p2(0.3, 0.4, 0.5);
|
|
mypoint3d<Real> p3(0.4, 0.5, 0.6);
|
|
mypoint3d<Real> p4(0.5, 0.6, 0.7);
|
|
mypoint3d<Real> p5(0.6, 0.7, 0.8);
|
|
|
|
|
|
// Tests initializer_list:
|
|
catmull_rom<mypoint3d<Real>> cat({p0, p1, p2, p3, p4, p5});
|
|
|
|
Real tol = 0.001;
|
|
auto p = cat(cat.parameter_at_point(0));
|
|
BOOST_CHECK_CLOSE_FRACTION(p[0], p0[0], tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(p[1], p0[1], tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(p[2], p0[2], tol);
|
|
p = cat(cat.parameter_at_point(1));
|
|
BOOST_CHECK_CLOSE_FRACTION(p[0], p1[0], tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(p[1], p1[1], tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(p[2], p1[2], tol);
|
|
}
|
|
|
|
template<class Real>
|
|
void test_random_access_container()
|
|
{
|
|
std::cout << "Testing that the Catmull-Rom spline works with multiple data representations.\n";
|
|
mypoint3d<Real> p0(0.1, 0.2, 0.3);
|
|
mypoint3d<Real> p1(0.2, 0.3, 0.4);
|
|
mypoint3d<Real> p2(0.3, 0.4, 0.5);
|
|
mypoint3d<Real> p3(0.4, 0.5, 0.6);
|
|
mypoint3d<Real> p4(0.5, 0.6, 0.7);
|
|
mypoint3d<Real> p5(0.6, 0.7, 0.8);
|
|
|
|
boost::numeric::ublas::vector<mypoint3d<Real>> u(6);
|
|
u[0] = p0;
|
|
u[1] = p1;
|
|
u[2] = p2;
|
|
u[3] = p3;
|
|
u[4] = p4;
|
|
u[5] = p5;
|
|
|
|
// Tests initializer_list:
|
|
catmull_rom<mypoint3d<Real>, decltype(u)> cat(std::move(u));
|
|
|
|
Real tol = 0.001;
|
|
auto p = cat(cat.parameter_at_point(0));
|
|
BOOST_CHECK_CLOSE_FRACTION(p[0], p0[0], tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(p[1], p0[1], tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(p[2], p0[2], tol);
|
|
p = cat(cat.parameter_at_point(1));
|
|
BOOST_CHECK_CLOSE_FRACTION(p[0], p1[0], tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(p[1], p1[1], tol);
|
|
BOOST_CHECK_CLOSE_FRACTION(p[2], p1[2], tol);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(catmull_rom_test)
|
|
{
|
|
#if !defined(TEST) || (TEST == 1)
|
|
test_data_representations<float>();
|
|
test_alpha_distance<double>();
|
|
|
|
test_linear<double>();
|
|
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
|
|
test_linear<long double>();
|
|
#endif
|
|
|
|
test_circle<float>();
|
|
test_circle<double>();
|
|
#endif
|
|
#if !defined(TEST) || (TEST == 2)
|
|
test_helix<double>();
|
|
|
|
test_affine_invariance<double, 1>();
|
|
test_affine_invariance<double, 2>();
|
|
test_affine_invariance<double, 3>();
|
|
test_affine_invariance<double, 4>();
|
|
|
|
test_random_access_container<double>();
|
|
#endif
|
|
#if !defined(TEST) || (TEST == 3)
|
|
test_affine_invariance<cpp_bin_float_50, 4>();
|
|
#endif
|
|
}
|