boost/libs/math/example/daubechies_wavelets/daubechies_wavelet_plots.cpp
2021-10-05 21:37:46 +02:00

161 lines
6.0 KiB
C++

/*
* Copyright Nick Thompson, 2020
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#include <iostream>
#include <boost/core/demangle.hpp>
#include <boost/hana/for_each.hpp>
#include <boost/hana/ext/std/integer_sequence.hpp>
#include <boost/multiprecision/float128.hpp>
#include <boost/math/special_functions/daubechies_wavelet.hpp>
#include <quicksvg/graph_fn.hpp>
#include <quicksvg/ulp_plot.hpp>
using boost::multiprecision::float128;
constexpr const int GRAPH_WIDTH = 700;
template<typename Real, int p>
void plot_psi(int grid_refinements = -1)
{
auto psi = boost::math::daubechies_wavelet<Real, p>();
if (grid_refinements >= 0)
{
psi = boost::math::daubechies_wavelet<Real, p>(grid_refinements);
}
auto [a, b] = psi.support();
std::string title = "Daubechies " + std::to_string(p) + " wavelet";
title = "";
std::string filename = "daubechies_" + std::to_string(p) + "_wavelet.svg";
int samples = 1024;
quicksvg::graph_fn daub(a, b, title, filename, samples, GRAPH_WIDTH);
daub.set_gridlines(8, 2*p-1);
daub.set_stroke_width(1);
daub.add_fn(psi);
daub.write_all();
}
template<typename Real, int p>
void plot_dpsi(int grid_refinements = -1)
{
auto psi = boost::math::daubechies_wavelet<Real, p>();
if (grid_refinements >= 0)
{
psi = boost::math::daubechies_wavelet<Real, p>(grid_refinements);
}
auto [a, b] = psi.support();
std::string title = "Daubechies " + std::to_string(p) + " wavelet derivative";
title = "";
std::string filename = "daubechies_" + std::to_string(p) + "_wavelet_prime.svg";
int samples = 1024;
quicksvg::graph_fn daub(a, b, title, filename, samples, GRAPH_WIDTH);
daub.set_stroke_width(1);
daub.set_gridlines(8, 2*p-1);
auto dpsi = [psi](Real x)->Real { return psi.prime(x); };
daub.add_fn(dpsi);
daub.write_all();
}
template<typename Real, int p>
void plot_convergence()
{
auto psi1 = boost::math::daubechies_wavelet<Real, p>(1);
auto [a, b] = psi1.support();
std::string title = "Daubechies " + std::to_string(p) + " wavelet at 1 (orange), 2 (red), and 21 (blue) grid refinements";
title = "";
std::string filename = "daubechies_" + std::to_string(p) + "_wavelet_convergence.svg";
quicksvg::graph_fn daub(a, b, title, filename, 1024, GRAPH_WIDTH);
daub.set_stroke_width(1);
daub.set_gridlines(8, 2*p-1);
daub.add_fn(psi1, "orange");
auto psi2 = boost::math::daubechies_wavelet<Real, p>(2);
daub.add_fn(psi2, "red");
auto psi21 = boost::math::daubechies_wavelet<Real, p>(21);
daub.add_fn(psi21);
daub.write_all();
}
template<typename Real, int p>
void plot_condition_number()
{
using std::abs;
using std::log;
static_assert(p >= 3, "p = 2 is not differentiable, so condition numbers cannot be effectively evaluated.");
auto phi = boost::math::daubechies_wavelet<Real, p>();
Real a = phi.support().first + 1000*std::sqrt(std::numeric_limits<Real>::epsilon());
Real b = phi.support().second - 1000*std::sqrt(std::numeric_limits<Real>::epsilon());
std::string title = "log10 of condition number of function evaluation for Daubechies " + std::to_string(p) + " wavelet function.";
title = "";
std::string filename = "daubechies_" + std::to_string(p) + "_wavelet_condition_number.svg";
quicksvg::graph_fn daub(a, b, title, filename, 2048, GRAPH_WIDTH);
daub.set_stroke_width(1);
daub.set_gridlines(8, 2*p-1);
auto cond = [&phi](Real x)
{
Real y = phi(x);
Real dydx = phi.prime(x);
Real z = abs(x*dydx/y);
using std::isnan;
if (z==0)
{
return Real(-1);
}
if (isnan(z))
{
// Graphing libraries don't like nan's:
return Real(1);
}
return log10(z);
};
daub.add_fn(cond);
daub.write_all();
}
template<typename CoarseReal, typename PreciseReal, int p, class PsiPrecise>
void do_ulp(int coarse_refinements, PsiPrecise psi_precise)
{
auto psi_coarse = boost::math::daubechies_wavelet<CoarseReal, p>(coarse_refinements);
std::string title = std::to_string(p) + " vanishing moment ULP plot at " + std::to_string(coarse_refinements) + " refinements and " + boost::core::demangle(typeid(CoarseReal).name()) + " precision";
title = "";
std::string filename = "daubechies_" + std::to_string(p) + "_wavelet_" + boost::core::demangle(typeid(CoarseReal).name()) + "_" + std::to_string(coarse_refinements) + "_refinements.svg";
int samples = 20000;
int clip = 20;
int horizontal_lines = 8;
int vertical_lines = 2*p - 1;
quicksvg::ulp_plot<decltype(psi_coarse), CoarseReal, decltype(psi_precise), PreciseReal>(psi_coarse, psi_precise, CoarseReal(psi_coarse.support().first), psi_coarse.support().second, title, filename, samples, GRAPH_WIDTH, clip, horizontal_lines, vertical_lines);
}
int main()
{
boost::hana::for_each(std::make_index_sequence<18>(), [&](auto i){ plot_psi<double, i+2>(); });
boost::hana::for_each(std::make_index_sequence<17>(), [&](auto i){ plot_dpsi<double, i+3>(); });
boost::hana::for_each(std::make_index_sequence<17>(), [&](auto i){ plot_condition_number<double, i+3>(); });
boost::hana::for_each(std::make_index_sequence<18>(), [&](auto i){ plot_convergence<double, i+2>(); });
using PreciseReal = float128;
using CoarseReal = double;
int precise_refinements = 22;
constexpr const int p = 9;
std::cout << "Computing precise wavelet function in " << boost::core::demangle(typeid(PreciseReal).name()) << " precision.\n";
auto phi_precise = boost::math::daubechies_wavelet<PreciseReal, p>(precise_refinements);
std::cout << "Beginning comparison with functions computed in " << boost::core::demangle(typeid(CoarseReal).name()) << " precision.\n";
for (int i = 7; i <= precise_refinements-1; ++i)
{
std::cout << "\tCoarse refinement " << i << "\n";
do_ulp<CoarseReal, PreciseReal, p>(i, phi_precise);
}
}