2021-10-05 21:37:46 +02:00

561 lines
66 KiB
HTML
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>TR1 C Functions Quick Reference</title>
<link rel="stylesheet" href="../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../index.html" title="Math Toolkit 3.0.0">
<link rel="up" href="../extern_c.html" title='Chapter 9. TR1 and C99 external "C" Functions'>
<link rel="prev" href="c99.html" title="C99 C Functions">
<link rel="next" href="../root_finding.html" title="Chapter 10. Root Finding &amp; Minimization Algorithms">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="c99.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../extern_c.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../root_finding.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="math_toolkit.tr1_ref"></a><a class="link" href="tr1_ref.html" title="TR1 C Functions Quick Reference">TR1 C Functions Quick Reference</a>
</h2></div></div></div>
<h5>
<a name="math_toolkit.tr1_ref.h0"></a>
<span class="phrase"><a name="math_toolkit.tr1_ref.supported_tr1_functions"></a></span><a class="link" href="tr1_ref.html#math_toolkit.tr1_ref.supported_tr1_functions">Supported
TR1 Functions</a>
</h5>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">tr1</span><span class="special">{</span> <span class="keyword">extern</span> <span class="string">"C"</span><span class="special">{</span>
<span class="comment">// [5.2.1.1] associated Laguerre polynomials:</span>
<span class="keyword">double</span> <span class="identifier">assoc_laguerre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">assoc_laguerref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">assoc_laguerrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.2] associated Legendre functions:</span>
<span class="keyword">double</span> <span class="identifier">assoc_legendre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">assoc_legendref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">assoc_legendrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.3] beta function:</span>
<span class="keyword">double</span> <span class="identifier">beta</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">y</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">betaf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">y</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">betal</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">y</span><span class="special">);</span>
<span class="comment">// [5.2.1.4] (complete) elliptic integral of the first kind:</span>
<span class="keyword">double</span> <span class="identifier">comp_ellint_1</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">comp_ellint_1f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">comp_ellint_1l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>
<span class="comment">// [5.2.1.5] (complete) elliptic integral of the second kind:</span>
<span class="keyword">double</span> <span class="identifier">comp_ellint_2</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">comp_ellint_2f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">comp_ellint_2l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>
<span class="comment">// [5.2.1.6] (complete) elliptic integral of the third kind:</span>
<span class="keyword">double</span> <span class="identifier">comp_ellint_3</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">comp_ellint_3f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">nu</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">comp_ellint_3l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">);</span>
<span class="comment">// [5.2.1.8] regular modified cylindrical Bessel functions:</span>
<span class="keyword">double</span> <span class="identifier">cyl_bessel_i</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_bessel_if</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_bessel_il</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.9] cylindrical Bessel functions (of the first kind):</span>
<span class="keyword">double</span> <span class="identifier">cyl_bessel_j</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_bessel_jf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_bessel_jl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.10] irregular modified cylindrical Bessel functions:</span>
<span class="keyword">double</span> <span class="identifier">cyl_bessel_k</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_bessel_kf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_bessel_kl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.11] cylindrical Neumann functions;</span>
<span class="comment">// cylindrical Bessel functions (of the second kind):</span>
<span class="keyword">double</span> <span class="identifier">cyl_neumann</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_neumannf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_neumannl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.12] (incomplete) elliptic integral of the first kind:</span>
<span class="keyword">double</span> <span class="identifier">ellint_1</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">ellint_1f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">ellint_1l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="comment">// [5.2.1.13] (incomplete) elliptic integral of the second kind:</span>
<span class="keyword">double</span> <span class="identifier">ellint_2</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">ellint_2f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">ellint_2l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="comment">// [5.2.1.14] (incomplete) elliptic integral of the third kind:</span>
<span class="keyword">double</span> <span class="identifier">ellint_3</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">ellint_3f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">ellint_3l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="comment">// [5.2.1.15] exponential integral:</span>
<span class="keyword">double</span> <span class="identifier">expint</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">expintf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">expintl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.16] Hermite polynomials:</span>
<span class="keyword">double</span> <span class="identifier">hermite</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">hermitef</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">hermitel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.18] Laguerre polynomials:</span>
<span class="keyword">double</span> <span class="identifier">laguerre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">laguerref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">laguerrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.19] Legendre polynomials:</span>
<span class="keyword">double</span> <span class="identifier">legendre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">legendref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">legendrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.20] Riemann zeta function:</span>
<span class="keyword">double</span> <span class="identifier">riemann_zeta</span><span class="special">(</span><span class="keyword">double</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">riemann_zetaf</span><span class="special">(</span><span class="keyword">float</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">riemann_zetal</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span><span class="special">);</span>
<span class="comment">// [5.2.1.21] spherical Bessel functions (of the first kind):</span>
<span class="keyword">double</span> <span class="identifier">sph_bessel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">sph_besself</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">sph_bessell</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.22] spherical associated Legendre functions:</span>
<span class="keyword">double</span> <span class="identifier">sph_legendre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">theta</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">sph_legendref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">theta</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">sph_legendrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">theta</span><span class="special">);</span>
<span class="comment">// [5.2.1.23] spherical Neumann functions;</span>
<span class="comment">// spherical Bessel functions (of the second kind):</span>
<span class="keyword">double</span> <span class="identifier">sph_neumann</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">sph_neumannf</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">sph_neumannl</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="special">}}}}</span> <span class="comment">// namespaces</span>
</pre>
<p>
In addition sufficient additional overloads of the <code class="computeroutput"><span class="keyword">double</span></code>
versions of the above functions are provided, so that calling the function
with any mixture of <code class="computeroutput"><span class="keyword">float</span></code>, <code class="computeroutput"><span class="keyword">double</span></code>, <code class="computeroutput"><span class="keyword">long</span>
<span class="keyword">double</span></code>, or <span class="emphasis"><em>integer</em></span>
arguments is supported, with the return type determined by the <a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
type calculation rules</em></span></a>.
</p>
<p>
For example:
</p>
<pre class="programlisting"><span class="identifier">expintf</span><span class="special">(</span><span class="number">2.0f</span><span class="special">);</span> <span class="comment">// float version, returns float.</span>
<span class="identifier">expint</span><span class="special">(</span><span class="number">2.0f</span><span class="special">);</span> <span class="comment">// also calls the float version and returns float.</span>
<span class="identifier">expint</span><span class="special">(</span><span class="number">2.0</span><span class="special">);</span> <span class="comment">// double version, returns double.</span>
<span class="identifier">expintl</span><span class="special">(</span><span class="number">2.0L</span><span class="special">);</span> <span class="comment">// long double version, returns a long double.</span>
<span class="identifier">expint</span><span class="special">(</span><span class="number">2.0L</span><span class="special">);</span> <span class="comment">// also calls the long double version.</span>
<span class="identifier">expint</span><span class="special">(</span><span class="number">2</span><span class="special">);</span> <span class="comment">// integer argument is treated as a double, returns double.</span>
</pre>
<h5>
<a name="math_toolkit.tr1_ref.h1"></a>
<span class="phrase"><a name="math_toolkit.tr1_ref.quick_reference"></a></span><a class="link" href="tr1_ref.html#math_toolkit.tr1_ref.quick_reference">Quick
Reference</a>
</h5>
<pre class="programlisting"><span class="comment">// [5.2.1.1] associated Laguerre polynomials:</span>
<span class="keyword">double</span> <span class="identifier">assoc_laguerre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">assoc_laguerref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">assoc_laguerrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
The assoc_laguerre functions return:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/laguerre_1.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="sf_poly/laguerre.html" title="Laguerre (and Associated) Polynomials">laguerre</a> for
the full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.2] associated Legendre functions:</span>
<span class="keyword">double</span> <span class="identifier">assoc_legendre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">assoc_legendref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">assoc_legendrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
The assoc_legendre functions return:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/legendre_1b.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="sf_poly/legendre.html" title="Legendre (and Associated) Polynomials">legendre_p</a> for
the full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.3] beta function:</span>
<span class="keyword">double</span> <span class="identifier">beta</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">y</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">betaf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">y</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">betal</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">y</span><span class="special">);</span>
</pre>
<p>
Returns the beta function of <span class="emphasis"><em>x</em></span> and <span class="emphasis"><em>y</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/beta1.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="sf_beta/beta_function.html" title="Beta">beta</a> for
the full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.4] (complete) elliptic integral of the first kind:</span>
<span class="keyword">double</span> <span class="identifier">comp_ellint_1</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">comp_ellint_1f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">comp_ellint_1l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>
</pre>
<p>
Returns the complete elliptic integral of the first kind of <span class="emphasis"><em>k</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/ellint6.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="ellint/ellint_1.html" title="Elliptic Integrals of the First Kind - Legendre Form">ellint_1</a> for the
full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.5] (complete) elliptic integral of the second kind:</span>
<span class="keyword">double</span> <span class="identifier">comp_ellint_2</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">comp_ellint_2f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">comp_ellint_2l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>
</pre>
<p>
Returns the complete elliptic integral of the second kind of <span class="emphasis"><em>k</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/ellint7.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="ellint/ellint_2.html" title="Elliptic Integrals of the Second Kind - Legendre Form">ellint_2</a> for the
full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.6] (complete) elliptic integral of the third kind:</span>
<span class="keyword">double</span> <span class="identifier">comp_ellint_3</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">comp_ellint_3f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">nu</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">comp_ellint_3l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">);</span>
</pre>
<p>
Returns the complete elliptic integral of the third kind of <span class="emphasis"><em>k</em></span>
and <span class="emphasis"><em>nu</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/ellint8.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="ellint/ellint_3.html" title="Elliptic Integrals of the Third Kind - Legendre Form">ellint_3</a> for the
full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.8] regular modified cylindrical Bessel functions:</span>
<span class="keyword">double</span> <span class="identifier">cyl_bessel_i</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_bessel_if</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_bessel_il</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
Returns the modified bessel function of the first kind of <span class="emphasis"><em>nu</em></span>
and <span class="emphasis"><em>x</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/mbessel2.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="bessel/mbessel.html" title="Modified Bessel Functions of the First and Second Kinds">cyl_bessel_i</a> for
the full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.9] cylindrical Bessel functions (of the first kind):</span>
<span class="keyword">double</span> <span class="identifier">cyl_bessel_j</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_bessel_jf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_bessel_jl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
Returns the bessel function of the first kind of <span class="emphasis"><em>nu</em></span> and
<span class="emphasis"><em>x</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/bessel2.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="bessel/bessel_first.html" title="Bessel Functions of the First and Second Kinds">cyl_bessel_j</a>
for the full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.10] irregular modified cylindrical Bessel functions:</span>
<span class="keyword">double</span> <span class="identifier">cyl_bessel_k</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_bessel_kf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_bessel_kl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
Returns the modified bessel function of the second kind of <span class="emphasis"><em>nu</em></span>
and <span class="emphasis"><em>x</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/mbessel3.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="bessel/mbessel.html" title="Modified Bessel Functions of the First and Second Kinds">cyl_bessel_k</a> for
the full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.11] cylindrical Neumann functions;</span>
<span class="comment">// cylindrical Bessel functions (of the second kind):</span>
<span class="keyword">double</span> <span class="identifier">cyl_neumann</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_neumannf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_neumannl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
Returns the bessel function of the second kind (Neumann function) of <span class="emphasis"><em>nu</em></span>
and <span class="emphasis"><em>x</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/bessel3.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="bessel/bessel_first.html" title="Bessel Functions of the First and Second Kinds">cyl_neumann</a>
for the full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.12] (incomplete) elliptic integral of the first kind:</span>
<span class="keyword">double</span> <span class="identifier">ellint_1</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">ellint_1f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">ellint_1l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
</pre>
<p>
Returns the incomplete elliptic integral of the first kind of <span class="emphasis"><em>k</em></span>
and <span class="emphasis"><em>phi</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/ellint2.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="ellint/ellint_1.html" title="Elliptic Integrals of the First Kind - Legendre Form">ellint_1</a> for the
full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.13] (incomplete) elliptic integral of the second kind:</span>
<span class="keyword">double</span> <span class="identifier">ellint_2</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">ellint_2f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">ellint_2l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
</pre>
<p>
Returns the incomplete elliptic integral of the second kind of <span class="emphasis"><em>k</em></span>
and <span class="emphasis"><em>phi</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/ellint3.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="ellint/ellint_2.html" title="Elliptic Integrals of the Second Kind - Legendre Form">ellint_2</a> for the
full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.14] (incomplete) elliptic integral of the third kind:</span>
<span class="keyword">double</span> <span class="identifier">ellint_3</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">ellint_3f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">ellint_3l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
</pre>
<p>
Returns the incomplete elliptic integral of the third kind of <span class="emphasis"><em>k</em></span>,
<span class="emphasis"><em>nu</em></span> and <span class="emphasis"><em>phi</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/ellint4.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="ellint/ellint_3.html" title="Elliptic Integrals of the Third Kind - Legendre Form">ellint_3</a> for the
full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.15] exponential integral:</span>
<span class="keyword">double</span> <span class="identifier">expint</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">expintf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">expintl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
Returns the exponential integral Ei of <span class="emphasis"><em>x</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/expint_i_1.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="expint/expint_i.html" title="Exponential Integral Ei">expint</a> for the
full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.16] Hermite polynomials:</span>
<span class="keyword">double</span> <span class="identifier">hermite</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">hermitef</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">hermitel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
Returns the n'th Hermite polynomial of <span class="emphasis"><em>x</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/hermite_0.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="sf_poly/hermite.html" title="Hermite Polynomials">hermite</a> for the
full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.18] Laguerre polynomials:</span>
<span class="keyword">double</span> <span class="identifier">laguerre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">laguerref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">laguerrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
Returns the n'th Laguerre polynomial of <span class="emphasis"><em>x</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/laguerre_0.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="sf_poly/laguerre.html" title="Laguerre (and Associated) Polynomials">laguerre</a> for
the full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.19] Legendre polynomials:</span>
<span class="keyword">double</span> <span class="identifier">legendre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">legendref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">legendrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
Returns the l'th Legendre polynomial of <span class="emphasis"><em>x</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/legendre_0.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="sf_poly/legendre.html" title="Legendre (and Associated) Polynomials">legendre_p</a> for
the full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.20] Riemann zeta function:</span>
<span class="keyword">double</span> <span class="identifier">riemann_zeta</span><span class="special">(</span><span class="keyword">double</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">riemann_zetaf</span><span class="special">(</span><span class="keyword">float</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">riemann_zetal</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span><span class="special">);</span>
</pre>
<p>
Returns the Riemann Zeta function of <span class="emphasis"><em>x</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/zeta1.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="zetas/zeta.html" title="Riemann Zeta Function">zeta</a> for the full template
(header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.21] spherical Bessel functions (of the first kind):</span>
<span class="keyword">double</span> <span class="identifier">sph_bessel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">sph_besself</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">sph_bessell</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
Returns the spherical Bessel function of the first kind of <span class="emphasis"><em>x</em></span>
j<sub>n</sub>(x):
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/sbessel2.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="bessel/sph_bessel.html" title="Spherical Bessel Functions of the First and Second Kinds">sph_bessel</a> for
the full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.22] spherical associated Legendre functions:</span>
<span class="keyword">double</span> <span class="identifier">sph_legendre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">theta</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">sph_legendref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">theta</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">sph_legendrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">theta</span><span class="special">);</span>
</pre>
<p>
Returns the spherical associated Legendre function of <span class="emphasis"><em>l</em></span>,
<span class="emphasis"><em>m</em></span> and <span class="emphasis"><em>theta</em></span>:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/spherical_3.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="sf_poly/sph_harm.html" title="Spherical Harmonics">spherical_harmonic</a>
for the full template (header only) version of this function.
</p>
<pre class="programlisting"><span class="comment">// [5.2.1.23] spherical Neumann functions;</span>
<span class="comment">// spherical Bessel functions (of the second kind):</span>
<span class="keyword">double</span> <span class="identifier">sph_neumann</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">sph_neumannf</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">sph_neumannl</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
Returns the spherical Neumann function of <span class="emphasis"><em>x</em></span> y<sub>n</sub>(x):
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/sbessel2.svg"></span>
</p></blockquote></div>
<p>
See also <a class="link" href="bessel/sph_bessel.html" title="Spherical Bessel Functions of the First and Second Kinds">sph_bessel</a> for
the full template (header only) version of this function.
</p>
<h5>
<a name="math_toolkit.tr1_ref.h2"></a>
<span class="phrase"><a name="math_toolkit.tr1_ref.currently_unsupported_tr1_functi"></a></span><a class="link" href="tr1_ref.html#math_toolkit.tr1_ref.currently_unsupported_tr1_functi">Currently
Unsupported TR1 Functions</a>
</h5>
<pre class="programlisting"><span class="comment">// [5.2.1.7] confluent hypergeometric functions:</span>
<span class="keyword">double</span> <span class="identifier">conf_hyperg</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">c</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">conf_hypergf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">c</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">conf_hypergl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">c</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="comment">// [5.2.1.17] hypergeometric functions:</span>
<span class="keyword">double</span> <span class="identifier">hyperg</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">b</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">c</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">hypergf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">b</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">c</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">hypergl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">b</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">c</span><span class="special">,</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
These two functions are not implemented as they are not believed to be numerically
stable.
</p></td></tr>
</table></div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="c99.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../extern_c.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../root_finding.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>