boost/libs/math/doc/html/math_toolkit/quat_overview.html
2021-10-05 21:37:46 +02:00

98 lines
6.8 KiB
HTML
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Overview</title>
<link rel="stylesheet" href="../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../index.html" title="Math Toolkit 3.0.0">
<link rel="up" href="../quaternions.html" title="Chapter 16. Quaternions">
<link rel="prev" href="../quaternions.html" title="Chapter 16. Quaternions">
<link rel="next" href="quat_header.html" title="Header File">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../quaternions.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quaternions.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="quat_header.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="math_toolkit.quat_overview"></a><a class="link" href="quat_overview.html" title="Overview">Overview</a>
</h2></div></div></div>
<p>
Quaternions are a relative of complex numbers.
</p>
<p>
Quaternions are in fact part of a small hierarchy of structures built upon
the real numbers, which comprise only the set of real numbers (traditionally
named <span class="emphasis"><em><span class="bold"><strong>R</strong></span></em></span>), the set of
complex numbers (traditionally named <span class="emphasis"><em><span class="bold"><strong>C</strong></span></em></span>),
the set of quaternions (traditionally named <span class="emphasis"><em><span class="bold"><strong>H</strong></span></em></span>)
and the set of octonions (traditionally named <span class="emphasis"><em><span class="bold"><strong>O</strong></span></em></span>),
which possess interesting mathematical properties (chief among which is the
fact that they are <span class="emphasis"><em>division algebras</em></span>, <span class="emphasis"><em>i.e.</em></span>
where the following property is true: if <span class="emphasis"><em><code class="literal">y</code></em></span>
is an element of that algebra and is <span class="bold"><strong>not equal to zero</strong></span>,
then <span class="emphasis"><em><code class="literal">yx = yx'</code></em></span>, where <span class="emphasis"><em><code class="literal">x</code></em></span>
and <span class="emphasis"><em><code class="literal">x'</code></em></span> denote elements of that algebra,
implies that <span class="emphasis"><em><code class="literal">x = x'</code></em></span>). Each member of
the hierarchy is a super-set of the former.
</p>
<p>
One of the most important aspects of quaternions is that they provide an efficient
way to parameterize rotations in <span class="emphasis"><em><span class="bold"><strong>R<sup>3</sup></strong></span></em></span>
(the usual three-dimensional space) and <span class="emphasis"><em><span class="bold"><strong>R<sup>4</sup></strong></span></em></span>.
</p>
<p>
In practical terms, a quaternion is simply a quadruple of real numbers (α,β,γ,δ),
which we can write in the form <span class="emphasis"><em><code class="literal">q = α + βi + γj + δk</code></em></span>,
where <span class="emphasis"><em><code class="literal">i</code></em></span> is the same object as for complex
numbers, and <span class="emphasis"><em><code class="literal">j</code></em></span> and <span class="emphasis"><em><code class="literal">k</code></em></span>
are distinct objects which play essentially the same kind of role as <span class="emphasis"><em><code class="literal">i</code></em></span>.
</p>
<p>
An addition and a multiplication is defined on the set of quaternions, which
generalize their real and complex counterparts. The main novelty here is that
<span class="bold"><strong>the multiplication is not commutative</strong></span> (i.e.
there are quaternions <span class="emphasis"><em><code class="literal">x</code></em></span> and <span class="emphasis"><em><code class="literal">y</code></em></span>
such that <span class="emphasis"><em><code class="literal">xy ≠ yx</code></em></span>). A good mnemotechnical
way of remembering things is by using the formula <span class="emphasis"><em><code class="literal">i*i =
j*j = k*k = -1</code></em></span>.
</p>
<p>
Quaternions (and their kin) are described in far more details in this other
<a href="../../quaternion/TQE.pdf" target="_top">document</a> (with <a href="../../quaternion/TQE_EA.pdf" target="_top">errata
and addenda</a>).
</p>
<p>
Some traditional constructs, such as the exponential, carry over without too
much change into the realms of quaternions, but other, such as taking a square
root, do not.
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../quaternions.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quaternions.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="quat_header.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>