boost/libs/math/doc/html/math_toolkit/oct_overview.html
2021-10-05 21:37:46 +02:00

88 lines
5.8 KiB
HTML
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Overview</title>
<link rel="stylesheet" href="../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../index.html" title="Math Toolkit 3.0.0">
<link rel="up" href="../octonions.html" title="Chapter 17. Octonions">
<link rel="prev" href="../octonions.html" title="Chapter 17. Octonions">
<link rel="next" href="oct_header.html" title="Header File">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../octonions.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../octonions.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="oct_header.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="math_toolkit.oct_overview"></a><a class="link" href="oct_overview.html" title="Overview">Overview</a>
</h2></div></div></div>
<p>
Octonions, like <a class="link" href="../quaternions.html" title="Chapter 16. Quaternions">quaternions</a>, are a relative
of complex numbers.
</p>
<p>
Octonions see some use in theoretical physics.
</p>
<p>
In practical terms, an octonion is simply an octuple of real numbers (α,β,γ,δ,ε,ζ,η,θ), which
we can write in the form <span class="emphasis"><em><code class="literal">o = α + βi + γj + δk + εe' + ζi' + ηj' + θk'</code></em></span>, where
<span class="emphasis"><em><code class="literal">i</code></em></span>, <span class="emphasis"><em><code class="literal">j</code></em></span>
and <span class="emphasis"><em><code class="literal">k</code></em></span> are the same objects as for quaternions,
and <span class="emphasis"><em><code class="literal">e'</code></em></span>, <span class="emphasis"><em><code class="literal">i'</code></em></span>,
<span class="emphasis"><em><code class="literal">j'</code></em></span> and <span class="emphasis"><em><code class="literal">k'</code></em></span>
are distinct objects which play essentially the same kind of role as <span class="emphasis"><em><code class="literal">i</code></em></span>
(or <span class="emphasis"><em><code class="literal">j</code></em></span> or <span class="emphasis"><em><code class="literal">k</code></em></span>).
</p>
<p>
Addition and a multiplication is defined on the set of octonions, which generalize
their quaternionic counterparts. The main novelty this time is that <span class="bold"><strong>the multiplication is not only not commutative, is now not even
associative</strong></span> (i.e. there are octonions <span class="emphasis"><em><code class="literal">x</code></em></span>,
<span class="emphasis"><em><code class="literal">y</code></em></span> and <span class="emphasis"><em><code class="literal">z</code></em></span>
such that <span class="emphasis"><em><code class="literal">x(yz) ≠ (xy)z</code></em></span>). A way of remembering
things is by using the following multiplication table:
</p>
<p>
<span class="inlinemediaobject"><img src="../../octonion/graphics/octonion_blurb17.jpeg"></span>
</p>
<p>
Octonions (and their kin) are described in far more details in this other
<a href="../../quaternion/TQE.pdf" target="_top">document</a> (with <a href="../../quaternion/TQE_EA.pdf" target="_top">errata
and addenda</a>).
</p>
<p>
Some traditional constructs, such as the exponential, carry over without too
much change into the realms of octonions, but other, such as taking a square
root, do not (the fact that the exponential has a closed form is a result of
the author, but the fact that the exponential exists at all for octonions is
known since quite a long time ago).
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../octonions.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../octonions.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="oct_header.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>