2021-10-05 21:37:46 +02:00

383 lines
21 KiB
HTML
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Elliptic Integral D - Legendre Form</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../../index.html" title="Math Toolkit 3.0.0">
<link rel="up" href="../ellint.html" title="Elliptic Integrals">
<link rel="prev" href="ellint_3.html" title="Elliptic Integrals of the Third Kind - Legendre Form">
<link rel="next" href="jacobi_zeta.html" title="Jacobi Zeta Function">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
<td align="center"><a href="../../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="ellint_3.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../ellint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="jacobi_zeta.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="math_toolkit.ellint.ellint_d"></a><a class="link" href="ellint_d.html" title="Elliptic Integral D - Legendre Form">Elliptic Integral D - Legendre
Form</a>
</h3></div></div></div>
<h5>
<a name="math_toolkit.ellint.ellint_d.h0"></a>
<span class="phrase"><a name="math_toolkit.ellint.ellint_d.synopsis"></a></span><a class="link" href="ellint_d.html#math_toolkit.ellint.ellint_d.synopsis">Synopsis</a>
</h5>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">ellint_d</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
</pre>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span> <span class="special">{</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
<span class="special">}}</span> <span class="comment">// namespaces</span>
</pre>
<h5>
<a name="math_toolkit.ellint.ellint_d.h1"></a>
<span class="phrase"><a name="math_toolkit.ellint.ellint_d.description"></a></span><a class="link" href="ellint_d.html#math_toolkit.ellint.ellint_d.description">Description</a>
</h5>
<p>
These two functions evaluate the incomplete elliptic integral <span class="emphasis"><em>D(φ,
k)</em></span> and its complete counterpart <span class="emphasis"><em>D(k) = D(π/2, k)</em></span>.
</p>
<p>
The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
type calculation rules</em></span></a> when the arguments are of different
types: when they are the same type then the result is the same type as the
arguments.
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_3</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">phi</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
</pre>
<p>
Returns the incomplete elliptic integral:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/ellint_d.svg"></span>
</p></blockquote></div>
<p>
Requires <span class="emphasis"><em>k<sup>2</sup>sin<sup>2</sup>(phi) &lt; 1</em></span>, otherwise returns the result
of <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
(outside this range the result would be complex).
</p>
<p>
The final <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
be used to control the behaviour of the function: how it handles errors,
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">policy
documentation for more details</a>.
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_d</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
</pre>
<p>
Returns the complete elliptic integral <span class="emphasis"><em>D(k) = D(π/2, k)</em></span>
</p>
<p>
Requires <span class="emphasis"><em>-1 &lt;= k &lt;= 1</em></span> otherwise returns the result
of <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>
(outside this range the result would be complex).
</p>
<p>
The final <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
be used to control the behaviour of the function: how it handles errors,
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">policy
documentation for more details</a>.
</p>
<h5>
<a name="math_toolkit.ellint.ellint_d.h2"></a>
<span class="phrase"><a name="math_toolkit.ellint.ellint_d.accuracy"></a></span><a class="link" href="ellint_d.html#math_toolkit.ellint.ellint_d.accuracy">Accuracy</a>
</h5>
<p>
These functions are trivially computed in terms of other elliptic integrals
and generally have very low error rates (a few epsilon) unless parameter
φ
is very large, in which case the usual trigonometric function argument-reduction
issues apply.
</p>
<div class="table">
<a name="math_toolkit.ellint.ellint_d.table_ellint_d_complete_"></a><p class="title"><b>Table 8.66. Error rates for ellint_d (complete)</b></p>
<div class="table-contents"><table class="table" summary="Error rates for ellint_d (complete)">
<colgroup>
<col>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
</th>
<th>
<p>
GNU C++ version 7.1.0<br> linux<br> double
</p>
</th>
<th>
<p>
GNU C++ version 7.1.0<br> linux<br> long double
</p>
</th>
<th>
<p>
Sun compiler version 0x5150<br> Sun Solaris<br> long double
</p>
</th>
<th>
<p>
Microsoft Visual C++ version 14.1<br> Win32<br> double
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
Elliptic Integral E: Mathworld Data
</p>
</td>
<td>
<p>
<span class="blue">Max = 0.637ε (Mean = 0.368ε)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 1.27ε (Mean = 0.735ε)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 1.27ε (Mean = 0.735ε)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 0.637ε (Mean = 0.368ε)</span>
</p>
</td>
</tr>
<tr>
<td>
<p>
Elliptic Integral D: Random Data
</p>
</td>
<td>
<p>
<span class="blue">Max = 0ε (Mean = 0ε)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 1.27ε (Mean = 0.334ε)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 1.27ε (Mean = 0.334ε)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 1.27ε (Mean = 0.355ε)</span>
</p>
</td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><div class="table">
<a name="math_toolkit.ellint.ellint_d.table_ellint_d"></a><p class="title"><b>Table 8.67. Error rates for ellint_d</b></p>
<div class="table-contents"><table class="table" summary="Error rates for ellint_d">
<colgroup>
<col>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
</th>
<th>
<p>
GNU C++ version 7.1.0<br> linux<br> double
</p>
</th>
<th>
<p>
GNU C++ version 7.1.0<br> linux<br> long double
</p>
</th>
<th>
<p>
Sun compiler version 0x5150<br> Sun Solaris<br> long double
</p>
</th>
<th>
<p>
Microsoft Visual C++ version 14.1<br> Win32<br> double
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
Elliptic Integral E: Mathworld Data
</p>
</td>
<td>
<p>
<span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
2.1:</em></span> Max = 0.862ε (Mean = 0.568ε))
</p>
</td>
<td>
<p>
<span class="blue">Max = 1.3ε (Mean = 0.813ε)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 1.3ε (Mean = 0.813ε)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 0.862ε (Mean = 0.457ε)</span>
</p>
</td>
</tr>
<tr>
<td>
<p>
Elliptic Integral D: Random Data
</p>
</td>
<td>
<p>
<span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
2.1:</em></span> Max = 3.01ε (Mean = 0.928ε))
</p>
</td>
<td>
<p>
<span class="blue">Max = 2.51ε (Mean = 0.883ε)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 2.51ε (Mean = 0.883ε)</span>
</p>
</td>
<td>
<p>
<span class="blue">Max = 2.87ε (Mean = 0.805ε)</span>
</p>
</td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><p>
The following error plot are based on an exhaustive search of the functions
domain, MSVC-15.5 at <code class="computeroutput"><span class="keyword">double</span></code>
precision, and GCC-7.1/Ubuntu for <code class="computeroutput"><span class="keyword">long</span>
<span class="keyword">double</span></code> and <code class="computeroutput"><span class="identifier">__float128</span></code>.
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../graphs/elliptic_integral_d__double.svg" align="middle"></span>
</p></blockquote></div>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../graphs/elliptic_integral_d__80_bit_long_double.svg" align="middle"></span>
</p></blockquote></div>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../graphs/elliptic_integral_d____float128.svg" align="middle"></span>
</p></blockquote></div>
<h5>
<a name="math_toolkit.ellint.ellint_d.h3"></a>
<span class="phrase"><a name="math_toolkit.ellint.ellint_d.testing"></a></span><a class="link" href="ellint_d.html#math_toolkit.ellint.ellint_d.testing">Testing</a>
</h5>
<p>
The tests use a mixture of spot test values calculated using values calculated
at <a href="http://www.wolframalpha.com/" target="_top">Wolfram Alpha</a>, and random
test data generated using MPFR at 1000-bit precision and a deliberately naive
implementation in terms of the Legendre integrals.
</p>
<h5>
<a name="math_toolkit.ellint.ellint_d.h4"></a>
<span class="phrase"><a name="math_toolkit.ellint.ellint_d.implementation"></a></span><a class="link" href="ellint_d.html#math_toolkit.ellint.ellint_d.implementation">Implementation</a>
</h5>
<p>
The implementation for D(φ, k) first performs argument reduction using the
relations:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="serif_italic"><span class="emphasis"><em>D(-φ, k) = -D(φ, k)</em></span></span>
</p></blockquote></div>
<p>
and
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="serif_italic"><span class="emphasis"><em>D(nπ+φ, k) = 2nD(k) + D(φ, k)</em></span></span>
</p></blockquote></div>
<p>
to move φ to the range [0, π/2].
</p>
<p>
The functions are then implemented in terms of Carlson's integral R<sub>D</sub>
using
the relation:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/ellint_d.svg"></span>
</p></blockquote></div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="ellint_3.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../ellint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="jacobi_zeta.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>