2021-10-05 21:37:46 +02:00

1753 lines
34 KiB
HTML
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>The Mathematical Constants</title>
<link rel="stylesheet" href="../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../index.html" title="Math Toolkit 3.0.0">
<link rel="up" href="../constants.html" title="Chapter 4. Mathematical Constants">
<link rel="prev" href="tutorial/user_def.html" title="Use With User-Defined Types">
<link rel="next" href="new_const.html" title="Defining New Constants">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="tutorial/user_def.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../constants.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="new_const.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="math_toolkit.constants"></a><a class="link" href="constants.html" title="The Mathematical Constants">The Mathematical Constants</a>
</h2></div></div></div>
<p>
This section lists the mathematical constants, their use(s) (and sometimes
rationale for their inclusion).
</p>
<div class="table">
<a name="math_toolkit.constants.mathematical_constants"></a><p class="title"><b>Table 4.1. Mathematical Constants</b></p>
<div class="table-contents"><table class="table" summary="Mathematical Constants">
<colgroup>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
name
</p>
</th>
<th>
<p>
formula
</p>
</th>
<th>
<p>
Value (6 decimals)
</p>
</th>
<th>
<p>
Uses and Rationale
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
<span class="bold"><strong>Rational fractions</strong></span>
</p>
</td>
<td>
</td>
<td>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
half
</p>
</td>
<td>
<p>
1/2
</p>
</td>
<td>
<p>
0.5
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
third
</p>
</td>
<td>
<p>
1/3
</p>
</td>
<td>
<p>
0.333333
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
two_thirds
</p>
</td>
<td>
<p>
2/3
</p>
</td>
<td>
<p>
0.66667
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
three_quarters
</p>
</td>
<td>
<p>
3/4
</p>
</td>
<td>
<p>
0.75
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
<span class="bold"><strong>two and related</strong></span>
</p>
</td>
<td>
</td>
<td>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
root_two
</p>
</td>
<td>
<p>
√2
</p>
</td>
<td>
<p>
1.41421
</p>
</td>
<td>
<p>
Equivalent to POSIX constant M_SQRT2
</p>
</td>
</tr>
<tr>
<td>
<p>
root_three
</p>
</td>
<td>
<p>
√3
</p>
</td>
<td>
<p>
1.73205
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
half_root_two
</p>
</td>
<td>
<p>
√2 /2
</p>
</td>
<td>
<p>
0.707106
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
ln_two
</p>
</td>
<td>
<p>
ln(2)
</p>
</td>
<td>
<p>
0.693147
</p>
</td>
<td>
<p>
Equivalent to POSIX constant M_LN2
</p>
</td>
</tr>
<tr>
<td>
<p>
ln_ten
</p>
</td>
<td>
<p>
ln(10)
</p>
</td>
<td>
<p>
2.30258
</p>
</td>
<td>
<p>
Equivalent to POSIX constant M_LN10
</p>
</td>
</tr>
<tr>
<td>
<p>
ln_ln_two
</p>
</td>
<td>
<p>
ln(ln(2))
</p>
</td>
<td>
<p>
-0.366512
</p>
</td>
<td>
<p>
Gumbel distribution median
</p>
</td>
</tr>
<tr>
<td>
<p>
root_ln_four
</p>
</td>
<td>
<p>
√ln(4)
</p>
</td>
<td>
<p>
1.177410
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
one_div_root_two
</p>
</td>
<td>
<p>
1/√2
</p>
</td>
<td>
<p>
0.707106
</p>
</td>
<td>
<p>
Equivalent to POSIX constant M_SQRT1_2
</p>
</td>
</tr>
<tr>
<td>
<p>
<span class="bold"><strong>π and related</strong></span>
</p>
</td>
<td>
</td>
<td>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
pi
</p>
</td>
<td>
<p>
π
</p>
</td>
<td>
<p>
3.14159
</p>
</td>
<td>
<p>
Ubiquitous. Archimedes constant <a href="http://en.wikipedia.org/wiki/Pi" target="_top">π</a>.
Equivalent to POSIX constant M_PI
</p>
</td>
</tr>
<tr>
<td>
<p>
half_pi
</p>
</td>
<td>
<p>
π/2
</p>
</td>
<td>
<p>
1.570796
</p>
</td>
<td>
<p>
Equivalent to POSIX constant M_PI2
</p>
</td>
</tr>
<tr>
<td>
<p>
third_pi
</p>
</td>
<td>
<p>
π/3
</p>
</td>
<td>
<p>
1.04719
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
quarter_pi
</p>
</td>
<td>
<p>
π/4
</p>
</td>
<td>
<p>
0.78539816
</p>
</td>
<td>
<p>
Equivalent to POSIX constant M_PI_4
</p>
</td>
</tr>
<tr>
<td>
<p>
sixth_pi
</p>
</td>
<td>
<p>
π/6
</p>
</td>
<td>
<p>
0.523598
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
two_pi
</p>
</td>
<td>
<p>
</p>
</td>
<td>
<p>
6.28318
</p>
</td>
<td>
<p>
Many uses, most simply, circumference of a circle
</p>
</td>
</tr>
<tr>
<td>
<p>
two_thirds_pi
</p>
</td>
<td>
<p>
2/3 π
</p>
</td>
<td>
<p>
2.09439
</p>
</td>
<td>
<p>
<a href="http://en.wikipedia.org/wiki/Sphere#Volume_of_a_sphere" target="_top">volume
of a hemi-sphere</a> = 4/3 π r³
</p>
</td>
</tr>
<tr>
<td>
<p>
three_quarters_pi
</p>
</td>
<td>
<p>
3/4 π
</p>
</td>
<td>
<p>
2.35619
</p>
</td>
<td>
<p>
= 3/4 π
</p>
</td>
</tr>
<tr>
<td>
<p>
four_thirds_pi
</p>
</td>
<td>
<p>
4/3 π
</p>
</td>
<td>
<p>
4.18879
</p>
</td>
<td>
<p>
<a href="http://en.wikipedia.org/wiki/Sphere#Volume_of_a_sphere" target="_top">volume
of a sphere</a> = 4/3 π r³
</p>
</td>
</tr>
<tr>
<td>
<p>
one_div_two_pi
</p>
</td>
<td>
<p>
1/(2π)
</p>
</td>
<td>
<p>
1.59155
</p>
</td>
<td>
<p>
Widely used
</p>
</td>
</tr>
<tr>
<td>
<p>
root_pi
</p>
</td>
<td>
<p>
√π
</p>
</td>
<td>
<p>
1.77245
</p>
</td>
<td>
<p>
Widely used
</p>
</td>
</tr>
<tr>
<td>
<p>
root_half_pi
</p>
</td>
<td>
<p>
√ π/2
</p>
</td>
<td>
<p>
1.25331
</p>
</td>
<td>
<p>
Widely used
</p>
</td>
</tr>
<tr>
<td>
<p>
root_two_pi
</p>
</td>
<td>
<p>
√ π*2
</p>
</td>
<td>
<p>
2.50662
</p>
</td>
<td>
<p>
Widely used
</p>
</td>
</tr>
<tr>
<td>
<p>
one_div_pi
</p>
</td>
<td>
<p>
1/π
</p>
</td>
<td>
<p>
0.31830988
</p>
</td>
<td>
<p>
Equivalent to POSIX constant M_1_PI
</p>
</td>
</tr>
<tr>
<td>
<p>
two_div_pi
</p>
</td>
<td>
<p>
2/π
</p>
</td>
<td>
<p>
0.63661977
</p>
</td>
<td>
<p>
Equivalent to POSIX constant M_2_PI
</p>
</td>
</tr>
<tr>
<td>
<p>
one_div_root_pi
</p>
</td>
<td>
<p>
1/√π
</p>
</td>
<td>
<p>
0.564189
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
two_div_root_pi
</p>
</td>
<td>
<p>
2/√π
</p>
</td>
<td>
<p>
1.128379
</p>
</td>
<td>
<p>
Equivalent to POSIX constant M_2_SQRTPI
</p>
</td>
</tr>
<tr>
<td>
<p>
one_div_root_two_pi
</p>
</td>
<td>
<p>
1/√(2π)
</p>
</td>
<td>
<p>
0.398942
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
root_one_div_pi
</p>
</td>
<td>
<p>
√(1/π
</p>
</td>
<td>
<p>
0.564189
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
pi_minus_three
</p>
</td>
<td>
<p>
π-3
</p>
</td>
<td>
<p>
0.141593
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
four_minus_pi
</p>
</td>
<td>
<p>
4 -π
</p>
</td>
<td>
<p>
0.858407
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
pi_pow_e
</p>
</td>
<td>
<p>
π<sup>e</sup>
</p>
</td>
<td>
<p>
22.4591
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
pi_sqr
</p>
</td>
<td>
<p>
π<sup>2</sup>
</p>
</td>
<td>
<p>
9.86960
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
pi_sqr_div_six
</p>
</td>
<td>
<p>
π<sup>2</sup>/6
</p>
</td>
<td>
<p>
1.64493
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
pi_cubed
</p>
</td>
<td>
<p>
π<sup>3</sup>
</p>
</td>
<td>
<p>
31.00627
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
cbrt_pi
</p>
</td>
<td>
<p>
<sup>3</sup> π
</p>
</td>
<td>
<p>
1.46459
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
one_div_cbrt_pi
</p>
</td>
<td>
<p>
1/√<sup>3</sup> π
</p>
</td>
<td>
<p>
0.682784
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
<span class="bold"><strong>Euler's e and related</strong></span>
</p>
</td>
<td>
</td>
<td>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
e
</p>
</td>
<td>
<p>
e
</p>
</td>
<td>
<p>
2.71828
</p>
</td>
<td>
<p>
<a href="http://en.wikipedia.org/wiki/E_(mathematical_constant)" target="_top">Euler's
constant e</a>, equivalent to POSIX constant M_E
</p>
</td>
</tr>
<tr>
<td>
<p>
exp_minus_half
</p>
</td>
<td>
<p>
e <sup>-1/2</sup>
</p>
</td>
<td>
<p>
0.606530
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
e_pow_pi
</p>
</td>
<td>
<p>
e <sup>π</sup>
</p>
</td>
<td>
<p>
23.14069
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
root_e
</p>
</td>
<td>
<p>
√ e
</p>
</td>
<td>
<p>
1.64872
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
log10_e
</p>
</td>
<td>
<p>
log10(e)
</p>
</td>
<td>
<p>
0.434294
</p>
</td>
<td>
<p>
Equivalent to POSIX constant M_LOG10E
</p>
</td>
</tr>
<tr>
<td>
<p>
one_div_log10_e
</p>
</td>
<td>
<p>
1/log10(e)
</p>
</td>
<td>
<p>
2.30258
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
log2_e
</p>
</td>
<td>
<p>
log<sub>2</sub>(e)
</p>
</td>
<td>
<p>
1.442695
</p>
</td>
<td>
<p>
This is the same as 1/ln(2) and is equivalent to POSIX constant M_LOG2E
</p>
</td>
</tr>
<tr>
<td>
<p>
<span class="bold"><strong>Trigonometric</strong></span>
</p>
</td>
<td>
</td>
<td>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
degree
</p>
</td>
<td>
<p>
radians = π / 180
</p>
</td>
<td>
<p>
0.017453
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
radian
</p>
</td>
<td>
<p>
degrees = 180 / π
</p>
</td>
<td>
<p>
57.2957
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
sin_one
</p>
</td>
<td>
<p>
sin(1)
</p>
</td>
<td>
<p>
0.841470
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
cos_one
</p>
</td>
<td>
<p>
cos(1)
</p>
</td>
<td>
<p>
0.54030
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
sinh_one
</p>
</td>
<td>
<p>
sinh(1)
</p>
</td>
<td>
<p>
1.17520
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
cosh_one
</p>
</td>
<td>
<p>
cosh(1)
</p>
</td>
<td>
<p>
1.54308
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
<span class="bold"><strong>Phi</strong></span>
</p>
</td>
<td>
<p>
Phidias golden ratio
</p>
</td>
<td>
<p>
<a href="http://en.wikipedia.org/wiki/Golden_ratio" target="_top">Phidias golden
ratio</a>
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
phi
</p>
</td>
<td>
<p>
(1 + √5) /2
</p>
</td>
<td>
<p>
1.61803
</p>
</td>
<td>
<p>
finance
</p>
</td>
</tr>
<tr>
<td>
<p>
ln_phi
</p>
</td>
<td>
<p>
ln(φ)
</p>
</td>
<td>
<p>
0.48121
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
one_div_ln_phi
</p>
</td>
<td>
<p>
1/ln(φ)
</p>
</td>
<td>
<p>
2.07808
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
<span class="bold"><strong>Euler's Gamma</strong></span>
</p>
</td>
<td>
</td>
<td>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
euler
</p>
</td>
<td>
<p>
euler
</p>
</td>
<td>
<p>
0.577215
</p>
</td>
<td>
<p>
<a href="http://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant" target="_top">Euler-Mascheroni
gamma constant</a>
</p>
</td>
</tr>
<tr>
<td>
<p>
one_div_euler
</p>
</td>
<td>
<p>
1/euler
</p>
</td>
<td>
<p>
1.73245
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
euler_sqr
</p>
</td>
<td>
<p>
euler<sup>2</sup>
</p>
</td>
<td>
<p>
0.333177
</p>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
<span class="bold"><strong>Misc</strong></span>
</p>
</td>
<td>
</td>
<td>
</td>
<td>
</td>
</tr>
<tr>
<td>
<p>
zeta_two
</p>
</td>
<td>
<p>
ζ(2)
</p>
</td>
<td>
<p>
1.64493
</p>
</td>
<td>
<p>
<a href="http://en.wikipedia.org/wiki/Riemann_zeta_function" target="_top">Riemann
zeta function</a>
</p>
</td>
</tr>
<tr>
<td>
<p>
zeta_three
</p>
</td>
<td>
<p>
ζ(3)
</p>
</td>
<td>
<p>
1.20205
</p>
</td>
<td>
<p>
<a href="http://en.wikipedia.org/wiki/Riemann_zeta_function" target="_top">Riemann
zeta function</a>
</p>
</td>
</tr>
<tr>
<td>
<p>
catalan
</p>
</td>
<td>
<p>
<span class="emphasis"><em>K</em></span>
</p>
</td>
<td>
<p>
0.915965
</p>
</td>
<td>
<p>
<a href="http://mathworld.wolfram.com/CatalansConstant.html" target="_top">Catalan
(or Glaisher) combinatorial constant</a>
</p>
</td>
</tr>
<tr>
<td>
<p>
glaisher
</p>
</td>
<td>
<p>
<span class="emphasis"><em>A</em></span>
</p>
</td>
<td>
<p>
1.28242
</p>
</td>
<td>
<p>
<a href="https://oeis.org/A074962/constant" target="_top">Decimal expansion
of Glaisher-Kinkelin constant</a>
</p>
</td>
</tr>
<tr>
<td>
<p>
khinchin
</p>
</td>
<td>
<p>
<span class="emphasis"><em>k</em></span>
</p>
</td>
<td>
<p>
2.685452
</p>
</td>
<td>
<p>
<a href="https://oeis.org/A002210/constant" target="_top">Decimal expansion
of Khinchin constant</a>
</p>
</td>
</tr>
<tr>
<td>
<p>
extreme_value_skewness
</p>
</td>
<td>
<p>
12√6 ζ(3)/ π<sup>3</sup>
</p>
</td>
<td>
<p>
1.139547
</p>
</td>
<td>
<p>
Extreme value distribution
</p>
</td>
</tr>
<tr>
<td>
<p>
rayleigh_skewness
</p>
</td>
<td>
<p>
2√π(π-3)/(4 - π)<sup>3/2</sup>
</p>
</td>
<td>
<p>
0.631110
</p>
</td>
<td>
<p>
Rayleigh distribution skewness
</p>
</td>
</tr>
<tr>
<td>
<p>
rayleigh_kurtosis_excess
</p>
</td>
<td>
<p>
-(6π<sup>2</sup>-24π+16)/(4-π)<sup>2</sup>
</p>
</td>
<td>
<p>
0.245089
</p>
</td>
<td>
<p>
<a href="http://en.wikipedia.org/wiki/Rayleigh_distribution" target="_top">Rayleigh
distribution kurtosis excess</a>
</p>
</td>
</tr>
<tr>
<td>
<p>
rayleigh_kurtosis
</p>
</td>
<td>
<p>
3+(6π<sup>2</sup>-24π+16)/(4-π)<sup>2</sup>
</p>
</td>
<td>
<p>
3.245089
</p>
</td>
<td>
<p>
Rayleigh distribution kurtosis
</p>
</td>
</tr>
<tr>
<td>
<p>
first_feigenbaum
</p>
</td>
<td>
</td>
<td>
<p>
4.6692016
</p>
</td>
<td>
<p>
<a href="https://en.wikipedia.org/wiki/Feigenbaum_constants" target="_top">First
Feigenbaum constant</a>
</p>
</td>
</tr>
<tr>
<td>
<p>
plastic
</p>
</td>
<td>
<p>
Real solution of x<sup>3</sup> = x + 1
</p>
</td>
<td>
<p>
1.324717957
</p>
</td>
<td>
<p>
<a href="https://en.wikipedia.org/wiki/Plastic_number" target="_top">Plastic
constant</a>
</p>
</td>
</tr>
<tr>
<td>
<p>
gauss
</p>
</td>
<td>
<p>
Reciprocal of agm(1, √2)
</p>
</td>
<td>
<p>
0.8346268
</p>
</td>
<td>
<p>
<a href="https://en.wikipedia.org/wiki/Gauss%27s_constant" target="_top">Gauss's
constant</a>
</p>
</td>
</tr>
<tr>
<td>
<p>
dottie
</p>
</td>
<td>
<p>
Solution of cos(x) = x
</p>
</td>
<td>
<p>
0.739085
</p>
</td>
<td>
<p>
<a href="https://en.wikipedia.org/wiki/Dottie_number" target="_top">Dottie's
number</a>
</p>
</td>
</tr>
<tr>
<td>
<p>
reciprocal_fibonacci
</p>
</td>
<td>
<p>
Sum of reciprocals of Fibonacci numbers
</p>
</td>
<td>
<p>
3.359885666
</p>
</td>
<td>
<p>
<a href="https://en.wikipedia.org/wiki/Reciprocal_Fibonacci_constant" target="_top">Reciprocal
Fibonacci constant</a>
</p>
</td>
</tr>
<tr>
<td>
<p>
laplace_limit
</p>
</td>
<td>
</td>
<td>
<p>
.6627434193
</p>
</td>
<td>
<p>
<a href="https://en.wikipedia.org/wiki/Laplace_limit" target="_top">Laplace
Limit</a>
</p>
</td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
Integer values are <span class="bold"><strong>not included</strong></span> in this
list of math constants, however interesting, because they can be so easily
and exactly constructed, even for UDT, for example: <code class="computeroutput"><span class="keyword">static_cast</span><span class="special">&lt;</span><span class="identifier">cpp_float</span><span class="special">&gt;(</span><span class="number">42</span><span class="special">)</span></code>.
</p></td></tr>
</table></div>
<div class="tip"><table border="0" summary="Tip">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Tip]" src="../../../../../doc/src/images/tip.png"></td>
<th align="left">Tip</th>
</tr>
<tr><td align="left" valign="top"><p>
If you know the approximate value of the constant, you can search for the
value to find Boost.Math chosen name in this table.
</p></td></tr>
</table></div>
<div class="tip"><table border="0" summary="Tip">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Tip]" src="../../../../../doc/src/images/tip.png"></td>
<th align="left">Tip</th>
</tr>
<tr><td align="left" valign="top"><p>
Bernoulli numbers are available at <a class="link" href="number_series/bernoulli_numbers.html" title="Bernoulli Numbers">Bernoulli
numbers</a>.
</p></td></tr>
</table></div>
<div class="tip"><table border="0" summary="Tip">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Tip]" src="../../../../../doc/src/images/tip.png"></td>
<th align="left">Tip</th>
</tr>
<tr><td align="left" valign="top"><p>
Factorials are available at <a class="link" href="factorials/sf_factorial.html" title="Factorial">factorial</a>.
</p></td></tr>
</table></div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="tutorial/user_def.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../constants.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="new_const.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>