boost/libs/intrusive/test/unordered_test.hpp
2021-10-05 21:37:46 +02:00

752 lines
32 KiB
C++

/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2015-2015.
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////
#include <boost/intrusive/pointer_traits.hpp>
#include <boost/intrusive/detail/iterator.hpp>
#include "common_functors.hpp"
#include <vector>
#include <algorithm> //std::sort
#include <set>
#include <boost/core/lightweight_test.hpp>
#include "test_macros.hpp"
#include "test_container.hpp"
#include "unordered_test_common.hpp"
namespace boost{
namespace intrusive{
namespace test{
static const std::size_t BucketSize = 8;
template<class ContainerDefiner>
struct test_unordered
{
typedef typename ContainerDefiner::value_cont_type value_cont_type;
static void test_all(value_cont_type& values);
private:
static void test_sort(value_cont_type& values);
static void test_insert(value_cont_type& values, detail::true_);
static void test_insert(value_cont_type& values, detail::false_);
static void test_swap(value_cont_type& values);
static void test_rehash(value_cont_type& values, detail::true_);
static void test_rehash(value_cont_type& values, detail::false_);
static void test_find(value_cont_type& values);
static void test_impl();
static void test_clone(value_cont_type& values);
};
template<class ContainerDefiner>
void test_unordered<ContainerDefiner>::test_all (value_cont_type& values)
{
typedef typename ContainerDefiner::template container
<>::type unordered_type;
typedef typename unordered_type::bucket_traits bucket_traits;
typedef typename unordered_type::bucket_ptr bucket_ptr;
{
typename unordered_type::bucket_type buckets [BucketSize];
unordered_type testset
(bucket_traits(pointer_traits<bucket_ptr>::pointer_to(buckets[0]), BucketSize));
testset.insert(values.begin(), values.end());
test::test_container(testset);
testset.clear();
testset.insert(values.begin(), values.end());
test::test_common_unordered_and_associative_container(testset, values);
testset.clear();
testset.insert(values.begin(), values.end());
test::test_unordered_associative_container(testset, values);
testset.clear();
testset.insert(values.begin(), values.end());
typedef detail::bool_<boost::intrusive::test::is_multikey_true
<unordered_type>::value> select_t;
test::test_maybe_unique_container(testset, values, select_t());
}
{
value_cont_type vals(BucketSize);
for (int i = 0; i < (int)BucketSize; ++i)
(&vals[i])->value_ = i;
typename unordered_type::bucket_type buckets [BucketSize];
unordered_type testset(bucket_traits(
pointer_traits<bucket_ptr>::pointer_to(buckets[0]), BucketSize));
testset.insert(vals.begin(), vals.end());
test::test_iterator_forward(testset);
}
test_sort(values);
test_insert(values, detail::bool_<boost::intrusive::test::is_multikey_true<unordered_type>::value>());
test_swap(values);
test_rehash(values, detail::bool_<unordered_type::incremental>());
test_find(values);
test_impl();
test_clone(values);
}
//test case due to an error in tree implementation:
template<class ContainerDefiner>
void test_unordered<ContainerDefiner>::test_impl()
{
typedef typename ContainerDefiner::template container
<>::type unordered_type;
typedef typename unordered_type::bucket_traits bucket_traits;
typedef typename unordered_type::bucket_ptr bucket_ptr;
value_cont_type values (5);
for (int i = 0; i < 5; ++i)
values[i].value_ = i;
typename unordered_type::bucket_type buckets [BucketSize];
unordered_type testset(bucket_traits(
pointer_traits<bucket_ptr>::pointer_to(buckets[0]), BucketSize));
for (int i = 0; i < 5; ++i)
testset.insert (values[i]);
testset.erase (testset.iterator_to (values[0]));
testset.erase (testset.iterator_to (values[1]));
testset.insert (values[1]);
testset.erase (testset.iterator_to (values[2]));
testset.erase (testset.iterator_to (values[3]));
}
//test: constructor, iterator, clear, reverse_iterator, front, back, size:
template<class ContainerDefiner>
void test_unordered<ContainerDefiner>::test_sort(value_cont_type& values)
{
typedef typename ContainerDefiner::template container
<>::type unordered_type;
typedef typename unordered_type::bucket_traits bucket_traits;
typedef typename unordered_type::bucket_ptr bucket_ptr;
typename unordered_type::bucket_type buckets [BucketSize];
unordered_type testset1
(values.begin(), values.end(), bucket_traits
(pointer_traits<bucket_ptr>::pointer_to(buckets[0]), BucketSize));
if(unordered_type::incremental){
{ int init_values [] = { 4, 5, 1, 2, 2, 3 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
}
else{
{ int init_values [] = { 1, 2, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
}
testset1.clear();
BOOST_TEST (testset1.empty());
}
//test: insert, const_iterator, const_reverse_iterator, erase, iterator_to:
template<class ContainerDefiner>
void test_unordered<ContainerDefiner>::test_insert(value_cont_type& values, detail::false_) //not multikey
{
typedef typename ContainerDefiner::template container
<>::type unordered_set_type;
typedef typename unordered_set_type::bucket_traits bucket_traits;
typedef typename unordered_set_type::key_of_value key_of_value;
typename unordered_set_type::bucket_type buckets [BucketSize];
unordered_set_type testset(bucket_traits(
pointer_traits<typename unordered_set_type::bucket_ptr>::
pointer_to(buckets[0]), BucketSize));
testset.insert(&values[0] + 2, &values[0] + 5);
typename unordered_set_type::insert_commit_data commit_data;
BOOST_TEST ((!testset.insert_check(key_of_value()(values[2]), commit_data).second));
BOOST_TEST (( testset.insert_check(key_of_value()(values[0]), commit_data).second));
const unordered_set_type& const_testset = testset;
if(unordered_set_type::incremental)
{
{ int init_values [] = { 4, 5, 1 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, const_testset ); }
typename unordered_set_type::iterator i = testset.begin();
BOOST_TEST (i->value_ == 4);
i = testset.insert(values[0]).first;
BOOST_TEST (&*i == &values[0]);
i = testset.iterator_to (values[2]);
BOOST_TEST (&*i == &values[2]);
testset.erase (i);
{ int init_values [] = { 5, 1, 3 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, const_testset ); }
}
else{
{ int init_values [] = { 1, 4, 5 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, const_testset ); }
typename unordered_set_type::iterator i = testset.begin();
BOOST_TEST (i->value_ == 1);
i = testset.insert(values[0]).first;
BOOST_TEST (&*i == &values[0]);
i = testset.iterator_to (values[2]);
BOOST_TEST (&*i == &values[2]);
testset.erase (i);
{ int init_values [] = { 1, 3, 5 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, const_testset ); }
}
}
template<class ContainerDefiner>
void test_unordered<ContainerDefiner>::test_insert(value_cont_type& values, detail::true_) //is multikey
{
typedef typename ContainerDefiner::template container
<>::type unordered_type;
typedef typename unordered_type::bucket_traits bucket_traits;
typedef typename unordered_type::bucket_ptr bucket_ptr;
typedef typename unordered_type::iterator iterator;
typedef typename unordered_type::key_type key_type;
{
typename unordered_type::bucket_type buckets [BucketSize];
unordered_type testset(bucket_traits(
pointer_traits<bucket_ptr>::pointer_to(buckets[0]), BucketSize));
testset.insert(&values[0] + 2, &values[0] + 5);
const unordered_type& const_testset = testset;
if(unordered_type::incremental){
{
{ int init_values [] = { 4, 5, 1 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, const_testset ); }
typename unordered_type::iterator i = testset.begin();
BOOST_TEST (i->value_ == 4);
i = testset.insert (values[0]);
BOOST_TEST (&*i == &values[0]);
i = testset.iterator_to (values[2]);
BOOST_TEST (&*i == &values[2]);
testset.erase(i);
{ int init_values [] = { 5, 1, 3 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, const_testset ); }
testset.clear();
testset.insert(&values[0], &values[0] + values.size());
{ int init_values [] = { 4, 5, 1, 2, 2, 3 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, const_testset ); }
BOOST_TEST (testset.erase(key_type(1)) == 1);
BOOST_TEST (testset.erase(key_type(2)) == 2);
BOOST_TEST (testset.erase(key_type(3)) == 1);
BOOST_TEST (testset.erase(key_type(4)) == 1);
BOOST_TEST (testset.erase(key_type(5)) == 1);
BOOST_TEST (testset.empty() == true);
//Now with a single bucket
typename unordered_type::bucket_type single_bucket[1];
unordered_type testset2(bucket_traits(
pointer_traits<bucket_ptr>::pointer_to(single_bucket[0]), 1));
testset2.insert(&values[0], &values[0] + values.size());
BOOST_TEST (testset2.erase(key_type(5)) == 1);
BOOST_TEST (testset2.erase(key_type(2)) == 2);
BOOST_TEST (testset2.erase(key_type(1)) == 1);
BOOST_TEST (testset2.erase(key_type(4)) == 1);
BOOST_TEST (testset2.erase(key_type(3)) == 1);
BOOST_TEST (testset2.empty() == true);
}
}
else{
{
{ int init_values [] = { 1, 4, 5 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, const_testset ); }
typename unordered_type::iterator i = testset.begin();
BOOST_TEST (i->value_ == 1);
i = testset.insert (values[0]);
BOOST_TEST (&*i == &values[0]);
i = testset.iterator_to (values[2]);
BOOST_TEST (&*i == &values[2]);
testset.erase(i);
{ int init_values [] = { 1, 3, 5 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, const_testset ); }
testset.clear();
testset.insert(&values[0], &values[0] + values.size());
{ int init_values [] = { 1, 2, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, const_testset ); }
BOOST_TEST (testset.erase(key_type(1)) == 1);
BOOST_TEST (testset.erase(key_type(2)) == 2);
BOOST_TEST (testset.erase(key_type(3)) == 1);
BOOST_TEST (testset.erase(key_type(4)) == 1);
BOOST_TEST (testset.erase(key_type(5)) == 1);
BOOST_TEST (testset.empty() == true);
//Now with a single bucket
typename unordered_type::bucket_type single_bucket[1];
unordered_type testset2(bucket_traits(
pointer_traits<bucket_ptr>::pointer_to(single_bucket[0]), 1));
testset2.insert(&values[0], &values[0] + values.size());
BOOST_TEST (testset2.erase(key_type(5)) == 1);
BOOST_TEST (testset2.erase(key_type(2)) == 2);
BOOST_TEST (testset2.erase(key_type(1)) == 1);
BOOST_TEST (testset2.erase(key_type(4)) == 1);
BOOST_TEST (testset2.erase(key_type(3)) == 1);
BOOST_TEST (testset2.empty() == true);
}
}
{
//Now erase just one per loop
const int random_init[] = { 3, 2, 4, 1, 5, 2, 2 };
const unsigned int random_size = sizeof(random_init)/sizeof(random_init[0]);
typename unordered_type::bucket_type single_bucket[1];
for(unsigned int i = 0, max = random_size; i != max; ++i){
value_cont_type data (random_size);
for (unsigned int j = 0; j < random_size; ++j)
data[j].value_ = random_init[j];
unordered_type testset_new(bucket_traits(
pointer_traits<bucket_ptr>::pointer_to(single_bucket[0]), 1));
testset_new.insert(&data[0], &data[0]+max);
testset_new.erase(testset_new.iterator_to(data[i]));
BOOST_TEST (testset_new.size() == (max -1));
}
}
}
{
const unsigned int LoadFactor = 3;
const unsigned int NumIterations = BucketSize*LoadFactor;
value_cont_type random_init(NumIterations);//Preserve memory
value_cont_type set_tester;
set_tester.reserve(NumIterations);
//Initialize values
for (unsigned int i = 0; i < NumIterations; ++i){
random_init[i].value_ = i*2;//(i/LoadFactor)*LoadFactor;
}
typename unordered_type::bucket_type buckets [BucketSize];
bucket_traits btraits(pointer_traits<bucket_ptr>::pointer_to(buckets[0]), BucketSize);
for(unsigned int initial_pos = 0; initial_pos != (NumIterations+1); ++initial_pos){
for(unsigned int final_pos = initial_pos; final_pos != (NumIterations+1); ++final_pos){
//Create intrusive container inserting values
unordered_type testset
( random_init.data()
, random_init.data() + random_init.size()
, btraits);
BOOST_TEST (testset.size() == random_init.size());
//Obtain the iterator range to erase
iterator it_beg_pos = testset.begin();
for(unsigned int it_beg_pos_num = 0; it_beg_pos_num != initial_pos; ++it_beg_pos_num){
++it_beg_pos;
}
iterator it_end_pos(it_beg_pos);
for(unsigned int it_end_pos_num = 0; it_end_pos_num != (final_pos - initial_pos); ++it_end_pos_num){
++it_end_pos;
}
//Erase the same values in both the intrusive and original vector
std::size_t erased_cnt = boost::intrusive::iterator_distance(it_beg_pos, it_end_pos);
//Erase values from the intrusive container
testset.erase(it_beg_pos, it_end_pos);
BOOST_TEST (testset.size() == (random_init.size()-(final_pos - initial_pos)));
//Now test...
BOOST_TEST ((random_init.size() - erased_cnt) == testset.size());
//Create an ordered copy of the intrusive container
set_tester.insert(set_tester.end(), testset.begin(), testset.end());
std::sort(set_tester.begin(), set_tester.end());
{
typename value_cont_type::iterator it = set_tester.begin(), itend = set_tester.end();
typename value_cont_type::iterator random_init_it(random_init.begin());
for( ; it != itend; ++it){
while(!random_init_it->is_linked())
++random_init_it;
BOOST_TEST(*it == *random_init_it);
++random_init_it;
}
}
set_tester.clear();
}
}
}
}
//test: insert (seq-version), swap, erase (seq-version), size:
template<class ContainerDefiner>
void test_unordered<ContainerDefiner>::test_swap(value_cont_type& values)
{
typedef typename ContainerDefiner::template container
<>::type unordered_type;
typedef typename unordered_type::bucket_traits bucket_traits;
typedef typename unordered_type::bucket_ptr bucket_ptr;
typename unordered_type::bucket_type buckets [BucketSize];
typename unordered_type::bucket_type buckets2 [BucketSize];
unordered_type testset1(&values[0], &values[0] + 2,
bucket_traits(pointer_traits<bucket_ptr>::pointer_to(buckets[0]), BucketSize));
unordered_type testset2(bucket_traits(
pointer_traits<bucket_ptr>::pointer_to(buckets2[0]), BucketSize));
testset2.insert (&values[0] + 2, &values[0] + 6);
testset1.swap (testset2);
if(unordered_type::incremental){
{ int init_values [] = { 4, 5, 1, 2 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
{ int init_values [] = { 2, 3 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset2 ); }
testset1.erase (testset1.iterator_to(values[4]), testset1.end());
BOOST_TEST (testset1.size() == 1);
// BOOST_TEST (&testset1.front() == &values[3]);
BOOST_TEST (&*testset1.begin() == &values[2]);
}
else{
{ int init_values [] = { 1, 2, 4, 5 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
{ int init_values [] = { 2, 3 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset2 ); }
testset1.erase (testset1.iterator_to(values[5]), testset1.end());
BOOST_TEST (testset1.size() == 1);
// BOOST_TEST (&testset1.front() == &values[3]);
BOOST_TEST (&*testset1.begin() == &values[3]);
}
}
//test: rehash:
template<class ContainerDefiner>
void test_unordered<ContainerDefiner>::test_rehash(value_cont_type& values, detail::true_)
{
typedef typename ContainerDefiner::template container
<>::type unordered_type;
typedef typename unordered_type::bucket_traits bucket_traits;
typedef typename unordered_type::bucket_ptr bucket_ptr;
//Build a uset
typename unordered_type::bucket_type buckets1 [BucketSize];
typename unordered_type::bucket_type buckets2 [BucketSize*2];
unordered_type testset1(&values[0], &values[0] + values.size(),
bucket_traits(pointer_traits<bucket_ptr>::
pointer_to(buckets1[0]), BucketSize));
//Test current state
BOOST_TEST(testset1.split_count() == BucketSize/2);
{ int init_values [] = { 4, 5, 1, 2, 2, 3 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
//Incremental rehash step
BOOST_TEST (testset1.incremental_rehash() == true);
BOOST_TEST(testset1.split_count() == (BucketSize/2+1));
{ int init_values [] = { 5, 1, 2, 2, 3, 4 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
//Rest of incremental rehashes should lead to the same sequence
for(std::size_t split_bucket = testset1.split_count(); split_bucket != BucketSize; ++split_bucket){
BOOST_TEST (testset1.incremental_rehash() == true);
BOOST_TEST(testset1.split_count() == (split_bucket+1));
{ int init_values [] = { 1, 2, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
}
//This incremental rehash should fail because we've reached the end of the bucket array
BOOST_TEST (testset1.incremental_rehash() == false);
BOOST_TEST(testset1.split_count() == BucketSize);
{ int init_values [] = { 1, 2, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
//
//Try incremental hashing specifying a new bucket traits pointing to the same array
//
//This incremental rehash should fail because the new size is not twice the original
BOOST_TEST(testset1.incremental_rehash(bucket_traits(
pointer_traits<bucket_ptr>::
pointer_to(buckets1[0]), BucketSize)) == false);
BOOST_TEST(testset1.split_count() == BucketSize);
{ int init_values [] = { 1, 2, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
//
//Try incremental hashing specifying a new bucket traits pointing to the same array
//
//This incremental rehash should fail because the new size is not twice the original
BOOST_TEST(testset1.incremental_rehash(bucket_traits(
pointer_traits<bucket_ptr>::
pointer_to(buckets2[0]), BucketSize)) == false);
BOOST_TEST(testset1.split_count() == BucketSize);
{ int init_values [] = { 1, 2, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
//This incremental rehash should success because the new size is twice the original
//and split_count is the same as the old bucket count
BOOST_TEST(testset1.incremental_rehash(bucket_traits(
pointer_traits<bucket_ptr>::
pointer_to(buckets2[0]), BucketSize*2)) == true);
BOOST_TEST(testset1.split_count() == BucketSize);
{ int init_values [] = { 1, 2, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
//This incremental rehash should also success because the new size is half the original
//and split_count is the same as the new bucket count
BOOST_TEST(testset1.incremental_rehash(bucket_traits(
pointer_traits<bucket_ptr>::
pointer_to(buckets1[0]), BucketSize)) == true);
BOOST_TEST(testset1.split_count() == BucketSize);
{ int init_values [] = { 1, 2, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
//Shrink rehash
testset1.rehash(bucket_traits(
pointer_traits<bucket_ptr>::
pointer_to(buckets1[0]), 4));
BOOST_TEST (testset1.incremental_rehash() == false);
{ int init_values [] = { 4, 5, 1, 2, 2, 3 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
//Shrink rehash again
testset1.rehash(bucket_traits(
pointer_traits<bucket_ptr>::
pointer_to(buckets1[0]), 2));
BOOST_TEST (testset1.incremental_rehash() == false);
{ int init_values [] = { 2, 2, 4, 3, 5, 1 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
//Growing rehash
testset1.rehash(bucket_traits(
pointer_traits<bucket_ptr>::
pointer_to(buckets1[0]), BucketSize));
//Full rehash (no effects)
testset1.full_rehash();
{ int init_values [] = { 1, 2, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
//Incremental rehash shrinking
//First incremental rehashes should lead to the same sequence
for(std::size_t split_bucket = testset1.split_count(); split_bucket > 6; --split_bucket){
BOOST_TEST (testset1.incremental_rehash(false) == true);
BOOST_TEST(testset1.split_count() == (split_bucket-1));
{ int init_values [] = { 1, 2, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
}
//Incremental rehash step
BOOST_TEST (testset1.incremental_rehash(false) == true);
BOOST_TEST(testset1.split_count() == (BucketSize/2+1));
{ int init_values [] = { 5, 1, 2, 2, 3, 4 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
//Incremental rehash step 2
BOOST_TEST (testset1.incremental_rehash(false) == true);
BOOST_TEST(testset1.split_count() == (BucketSize/2));
{ int init_values [] = { 4, 5, 1, 2, 2, 3 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
//This incremental rehash should fail because we've reached the half of the bucket array
BOOST_TEST(testset1.incremental_rehash(false) == false);
BOOST_TEST(testset1.split_count() == BucketSize/2);
{ int init_values [] = { 4, 5, 1, 2, 2, 3 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
}
template<class ContainerDefiner>
void test_unordered<ContainerDefiner>::test_rehash(value_cont_type& values, detail::false_)
{
typedef typename ContainerDefiner::template container
<>::type unordered_type;
typedef typename unordered_type::bucket_traits bucket_traits;
typedef typename unordered_type::bucket_ptr bucket_ptr;
typename unordered_type::bucket_type buckets1 [BucketSize];
typename unordered_type::bucket_type buckets2 [2];
typename unordered_type::bucket_type buckets3 [BucketSize*2];
unordered_type testset1(&values[0], &values[0] + 6, bucket_traits(
pointer_traits<bucket_ptr>::
pointer_to(buckets1[0]), BucketSize));
{ int init_values [] = { 1, 2, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
testset1.rehash(bucket_traits(
pointer_traits<bucket_ptr>::pointer_to(buckets2[0]), 2));
{ int init_values [] = { 4, 2, 2, 5, 3, 1 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
testset1.rehash(bucket_traits(
pointer_traits<bucket_ptr>::pointer_to(buckets3[0]), BucketSize*2));
{ int init_values [] = { 1, 2, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
//Now rehash reducing the buckets
testset1.rehash(bucket_traits(
pointer_traits<bucket_ptr>::pointer_to(buckets3[0]), 2));
{ int init_values [] = { 4, 2, 2, 5, 3, 1 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
//Now rehash increasing the buckets
testset1.rehash(bucket_traits(
pointer_traits<bucket_ptr>::pointer_to(buckets3[0]), BucketSize*2));
{ int init_values [] = { 1, 2, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
//Full rehash (no effects)
testset1.full_rehash();
{ int init_values [] = { 1, 2, 2, 3, 4, 5 };
TEST_INTRUSIVE_SEQUENCE_MAYBEUNIQUE( init_values, testset1 ); }
}
//test: find, equal_range (lower_bound, upper_bound):
template<class ContainerDefiner>
void test_unordered<ContainerDefiner>::test_find(value_cont_type& values)
{
typedef typename ContainerDefiner::template container
<>::type unordered_type;
typedef typename unordered_type::value_type value_type;
typedef typename unordered_type::bucket_traits bucket_traits;
typedef typename unordered_type::bucket_ptr bucket_ptr;
typedef typename unordered_type::key_of_value key_of_value;
const bool is_multikey = boost::intrusive::test::is_multikey_true<unordered_type>::value;
typename unordered_type::bucket_type buckets[BucketSize];
unordered_type testset(values.begin(), values.end(), bucket_traits(
pointer_traits<bucket_ptr>::pointer_to(buckets[0]), BucketSize));
typedef typename unordered_type::iterator iterator;
value_type cmp_val;
cmp_val.value_ = 2;
BOOST_TEST (testset.count(key_of_value()(cmp_val)) == (is_multikey ? 2 : 1));
iterator i = testset.find (key_of_value()(cmp_val));
BOOST_TEST (i->value_ == 2);
if(is_multikey)
BOOST_TEST ((++i)->value_ == 2);
else
BOOST_TEST ((++i)->value_ != 2);
std::pair<iterator,iterator> range = testset.equal_range (key_of_value()(cmp_val));
BOOST_TEST (range.first->value_ == 2);
BOOST_TEST (range.second->value_ == 3);
BOOST_TEST (boost::intrusive::iterator_distance (range.first, range.second) == (is_multikey ? 2 : 1));
cmp_val.value_ = 7;
BOOST_TEST (testset.find (key_of_value()(cmp_val)) == testset.end());
BOOST_TEST (testset.count(key_of_value()(cmp_val)) == 0);
}
template<class ContainerDefiner>
void test_unordered<ContainerDefiner>::test_clone(value_cont_type& values)
{
typedef typename ContainerDefiner::template container
<>::type unordered_type;
typedef typename unordered_type::value_type value_type;
typedef std::multiset<value_type> std_multiset_t;
typedef typename unordered_type::bucket_traits bucket_traits;
typedef typename unordered_type::bucket_ptr bucket_ptr;
{
//Test with equal bucket arrays
typename unordered_type::bucket_type buckets1 [BucketSize];
typename unordered_type::bucket_type buckets2 [BucketSize];
unordered_type testset1 (values.begin(), values.end(), bucket_traits(
pointer_traits<bucket_ptr>::pointer_to(buckets1[0]), BucketSize));
unordered_type testset2 (bucket_traits(
pointer_traits<bucket_ptr>::pointer_to(buckets2[0]), BucketSize));
testset2.clone_from(testset1, test::new_cloner<value_type>(), test::delete_disposer<value_type>());
BOOST_TEST(testset1 == testset2);
//Ordering is not guarantee in the cloning so insert data in a set and test
std_multiset_t src(testset1.begin(), testset1.end());
std_multiset_t dst(testset2.begin(), testset2.end());
BOOST_TEST (src.size() == dst.size() && std::equal(src.begin(), src.end(), dst.begin()));
testset2.clear_and_dispose(test::delete_disposer<value_type>());
BOOST_TEST (testset2.empty());
testset2.clone_from(boost::move(testset1), test::new_nonconst_cloner<value_type>(), test::delete_disposer<value_type>());
BOOST_TEST(testset1 == testset2);
//Ordering is not guarantee in the cloning so insert data in a set and test
std_multiset_t(testset1.begin(), testset1.end()).swap(src);
std_multiset_t(testset2.begin(), testset2.end()).swap(dst);
BOOST_TEST(src.size() == dst.size() && std::equal(src.begin(), src.end(), dst.begin()));
testset2.clear_and_dispose(test::delete_disposer<value_type>());
BOOST_TEST (testset2.empty());
}
{
//Test with bigger source bucket arrays
typename unordered_type::bucket_type buckets1 [BucketSize*2];
typename unordered_type::bucket_type buckets2 [BucketSize];
unordered_type testset1 (values.begin(), values.end(), bucket_traits(
pointer_traits<bucket_ptr>::pointer_to(buckets1[0]), BucketSize*2));
unordered_type testset2 (bucket_traits(
pointer_traits<bucket_ptr>::pointer_to(buckets2[0]), BucketSize));
testset2.clone_from(testset1, test::new_cloner<value_type>(), test::delete_disposer<value_type>());
BOOST_TEST(testset1 == testset2);
//Ordering is not guarantee in the cloning so insert data in a set and test
std_multiset_t src(testset1.begin(), testset1.end());
std_multiset_t dst(testset2.begin(), testset2.end());
BOOST_TEST (src.size() == dst.size() && std::equal(src.begin(), src.end(), dst.begin()));
testset2.clear_and_dispose(test::delete_disposer<value_type>());
BOOST_TEST (testset2.empty());
testset2.clone_from(boost::move(testset1), test::new_nonconst_cloner<value_type>(), test::delete_disposer<value_type>());
BOOST_TEST(testset1 == testset2);
//Ordering is not guarantee in the cloning so insert data in a set and test
std_multiset_t(testset1.begin(), testset1.end()).swap(src);
std_multiset_t(testset2.begin(), testset2.end()).swap(dst);
BOOST_TEST (src.size() == dst.size() && std::equal(src.begin(), src.end(), dst.begin()));
testset2.clear_and_dispose(test::delete_disposer<value_type>());
BOOST_TEST (testset2.empty());
}
{
//Test with smaller source bucket arrays
typename unordered_type::bucket_type buckets1 [BucketSize];
typename unordered_type::bucket_type buckets2 [BucketSize*2];
unordered_type testset1 (values.begin(), values.end(), bucket_traits(
pointer_traits<bucket_ptr>::pointer_to(buckets1[0]), BucketSize));
unordered_type testset2 (bucket_traits(
pointer_traits<bucket_ptr>::pointer_to(buckets2[0]), BucketSize*2));
testset2.clone_from(testset1, test::new_cloner<value_type>(), test::delete_disposer<value_type>());
BOOST_TEST(testset1 == testset2);
//Ordering is not guaranteed in the cloning so insert data in a set and test
std_multiset_t src(testset1.begin(), testset1.end());
std_multiset_t dst(testset2.begin(), testset2.end());
BOOST_TEST (src.size() == dst.size() && std::equal(src.begin(), src.end(), dst.begin()));
testset2.clear_and_dispose(test::delete_disposer<value_type>());
BOOST_TEST (testset2.empty());
testset2.clone_from(boost::move(testset1), test::new_nonconst_cloner<value_type>(), test::delete_disposer<value_type>());
BOOST_TEST(testset1 == testset2);
//Ordering is not guaranteed in the cloning so insert data in a set and test
std_multiset_t(testset1.begin(), testset1.end()).swap(src);
std_multiset_t(testset2.begin(), testset2.end()).swap(dst);
BOOST_TEST (src.size() == dst.size() && std::equal(src.begin(), src.end(), dst.begin()));
testset2.clear_and_dispose(test::delete_disposer<value_type>());
BOOST_TEST (testset2.empty());
}
}
} //namespace test{
} //namespace intrusive{
} //namespace boost{