333 lines
12 KiB
C++
333 lines
12 KiB
C++
// Copyright Michael Drexl 2005, 2006.
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://boost.org/LICENSE_1_0.txt)
|
|
|
|
// Example use of the resource-constrained shortest paths algorithm.
|
|
#include <boost/config.hpp>
|
|
|
|
#ifdef BOOST_MSVC
|
|
#pragma warning(disable : 4267)
|
|
#endif
|
|
|
|
#include <boost/graph/adjacency_list.hpp>
|
|
|
|
#include <boost/graph/r_c_shortest_paths.hpp>
|
|
#include <iostream>
|
|
|
|
using namespace boost;
|
|
|
|
struct SPPRC_Example_Graph_Vert_Prop
|
|
{
|
|
SPPRC_Example_Graph_Vert_Prop(int n = 0, int e = 0, int l = 0)
|
|
: num(n), eat(e), lat(l)
|
|
{
|
|
}
|
|
int num;
|
|
// earliest arrival time
|
|
int eat;
|
|
// latest arrival time
|
|
int lat;
|
|
};
|
|
|
|
struct SPPRC_Example_Graph_Arc_Prop
|
|
{
|
|
SPPRC_Example_Graph_Arc_Prop(int n = 0, int c = 0, int t = 0)
|
|
: num(n), cost(c), time(t)
|
|
{
|
|
}
|
|
int num;
|
|
// traversal cost
|
|
int cost;
|
|
// traversal time
|
|
int time;
|
|
};
|
|
|
|
typedef adjacency_list< vecS, vecS, directedS, SPPRC_Example_Graph_Vert_Prop,
|
|
SPPRC_Example_Graph_Arc_Prop >
|
|
SPPRC_Example_Graph;
|
|
|
|
// data structures for spp without resource constraints:
|
|
// ResourceContainer model
|
|
struct spp_no_rc_res_cont
|
|
{
|
|
spp_no_rc_res_cont(int c = 0) : cost(c) {};
|
|
spp_no_rc_res_cont& operator=(const spp_no_rc_res_cont& other)
|
|
{
|
|
if (this == &other)
|
|
return *this;
|
|
this->~spp_no_rc_res_cont();
|
|
new (this) spp_no_rc_res_cont(other);
|
|
return *this;
|
|
}
|
|
int cost;
|
|
};
|
|
|
|
bool operator==(
|
|
const spp_no_rc_res_cont& res_cont_1, const spp_no_rc_res_cont& res_cont_2)
|
|
{
|
|
return (res_cont_1.cost == res_cont_2.cost);
|
|
}
|
|
|
|
bool operator<(
|
|
const spp_no_rc_res_cont& res_cont_1, const spp_no_rc_res_cont& res_cont_2)
|
|
{
|
|
return (res_cont_1.cost < res_cont_2.cost);
|
|
}
|
|
|
|
// ResourceExtensionFunction model
|
|
class ref_no_res_cont
|
|
{
|
|
public:
|
|
inline bool operator()(const SPPRC_Example_Graph& g,
|
|
spp_no_rc_res_cont& new_cont, const spp_no_rc_res_cont& old_cont,
|
|
graph_traits< SPPRC_Example_Graph >::edge_descriptor ed) const
|
|
{
|
|
new_cont.cost = old_cont.cost + g[ed].cost;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
// DominanceFunction model
|
|
class dominance_no_res_cont
|
|
{
|
|
public:
|
|
inline bool operator()(const spp_no_rc_res_cont& res_cont_1,
|
|
const spp_no_rc_res_cont& res_cont_2) const
|
|
{
|
|
// must be "<=" here!!!
|
|
// must NOT be "<"!!!
|
|
return res_cont_1.cost <= res_cont_2.cost;
|
|
// this is not a contradiction to the documentation
|
|
// the documentation says:
|
|
// "A label $l_1$ dominates a label $l_2$ if and only if both are
|
|
// resident at the same vertex, and if, for each resource, the resource
|
|
// consumption of $l_1$ is less than or equal to the resource
|
|
// consumption of $l_2$, and if there is at least one resource where
|
|
// $l_1$ has a lower resource consumption than $l_2$." one can think of
|
|
// a new label with a resource consumption equal to that of an old label
|
|
// as being dominated by that old label, because the new one will have a
|
|
// higher number and is created at a later point in time, so one can
|
|
// implicitly use the number or the creation time as a resource for
|
|
// tie-breaking
|
|
}
|
|
};
|
|
// end data structures for spp without resource constraints:
|
|
|
|
// data structures for shortest path problem with time windows (spptw)
|
|
// ResourceContainer model
|
|
struct spp_spptw_res_cont
|
|
{
|
|
spp_spptw_res_cont(int c = 0, int t = 0) : cost(c), time(t) {}
|
|
spp_spptw_res_cont& operator=(const spp_spptw_res_cont& other)
|
|
{
|
|
if (this == &other)
|
|
return *this;
|
|
this->~spp_spptw_res_cont();
|
|
new (this) spp_spptw_res_cont(other);
|
|
return *this;
|
|
}
|
|
int cost;
|
|
int time;
|
|
};
|
|
|
|
bool operator==(
|
|
const spp_spptw_res_cont& res_cont_1, const spp_spptw_res_cont& res_cont_2)
|
|
{
|
|
return (res_cont_1.cost == res_cont_2.cost
|
|
&& res_cont_1.time == res_cont_2.time);
|
|
}
|
|
|
|
bool operator<(
|
|
const spp_spptw_res_cont& res_cont_1, const spp_spptw_res_cont& res_cont_2)
|
|
{
|
|
if (res_cont_1.cost > res_cont_2.cost)
|
|
return false;
|
|
if (res_cont_1.cost == res_cont_2.cost)
|
|
return res_cont_1.time < res_cont_2.time;
|
|
return true;
|
|
}
|
|
|
|
// ResourceExtensionFunction model
|
|
class ref_spptw
|
|
{
|
|
public:
|
|
inline bool operator()(const SPPRC_Example_Graph& g,
|
|
spp_spptw_res_cont& new_cont, const spp_spptw_res_cont& old_cont,
|
|
graph_traits< SPPRC_Example_Graph >::edge_descriptor ed) const
|
|
{
|
|
const SPPRC_Example_Graph_Arc_Prop& arc_prop = get(edge_bundle, g)[ed];
|
|
const SPPRC_Example_Graph_Vert_Prop& vert_prop
|
|
= get(vertex_bundle, g)[target(ed, g)];
|
|
new_cont.cost = old_cont.cost + arc_prop.cost;
|
|
int& i_time = new_cont.time;
|
|
i_time = old_cont.time + arc_prop.time;
|
|
i_time < vert_prop.eat ? i_time = vert_prop.eat : 0;
|
|
return i_time <= vert_prop.lat ? true : false;
|
|
}
|
|
};
|
|
|
|
// DominanceFunction model
|
|
class dominance_spptw
|
|
{
|
|
public:
|
|
inline bool operator()(const spp_spptw_res_cont& res_cont_1,
|
|
const spp_spptw_res_cont& res_cont_2) const
|
|
{
|
|
// must be "<=" here!!!
|
|
// must NOT be "<"!!!
|
|
return res_cont_1.cost <= res_cont_2.cost
|
|
&& res_cont_1.time <= res_cont_2.time;
|
|
// this is not a contradiction to the documentation
|
|
// the documentation says:
|
|
// "A label $l_1$ dominates a label $l_2$ if and only if both are
|
|
// resident at the same vertex, and if, for each resource, the resource
|
|
// consumption of $l_1$ is less than or equal to the resource
|
|
// consumption of $l_2$, and if there is at least one resource where
|
|
// $l_1$ has a lower resource consumption than $l_2$." one can think of
|
|
// a new label with a resource consumption equal to that of an old label
|
|
// as being dominated by that old label, because the new one will have a
|
|
// higher number and is created at a later point in time, so one can
|
|
// implicitly use the number or the creation time as a resource for
|
|
// tie-breaking
|
|
}
|
|
};
|
|
// end data structures for shortest path problem with time windows (spptw)
|
|
|
|
// example graph structure and cost from
|
|
// http://www.boost.org/libs/graph/example/dijkstra-example.cpp
|
|
enum nodes
|
|
{
|
|
A,
|
|
B,
|
|
C,
|
|
D,
|
|
E
|
|
};
|
|
char name[] = "ABCDE";
|
|
|
|
int main()
|
|
{
|
|
SPPRC_Example_Graph g;
|
|
|
|
add_vertex(SPPRC_Example_Graph_Vert_Prop(A, 0, 0), g);
|
|
add_vertex(SPPRC_Example_Graph_Vert_Prop(B, 5, 20), g);
|
|
add_vertex(SPPRC_Example_Graph_Vert_Prop(C, 6, 10), g);
|
|
add_vertex(SPPRC_Example_Graph_Vert_Prop(D, 3, 12), g);
|
|
add_vertex(SPPRC_Example_Graph_Vert_Prop(E, 0, 100), g);
|
|
|
|
add_edge(A, C, SPPRC_Example_Graph_Arc_Prop(0, 1, 5), g);
|
|
add_edge(B, B, SPPRC_Example_Graph_Arc_Prop(1, 2, 5), g);
|
|
add_edge(B, D, SPPRC_Example_Graph_Arc_Prop(2, 1, 2), g);
|
|
add_edge(B, E, SPPRC_Example_Graph_Arc_Prop(3, 2, 7), g);
|
|
add_edge(C, B, SPPRC_Example_Graph_Arc_Prop(4, 7, 3), g);
|
|
add_edge(C, D, SPPRC_Example_Graph_Arc_Prop(5, 3, 8), g);
|
|
add_edge(D, E, SPPRC_Example_Graph_Arc_Prop(6, 1, 3), g);
|
|
add_edge(E, A, SPPRC_Example_Graph_Arc_Prop(7, 1, 5), g);
|
|
add_edge(E, B, SPPRC_Example_Graph_Arc_Prop(8, 1, 4), g);
|
|
|
|
// the unique shortest path from A to E in the dijkstra-example.cpp is
|
|
// A -> C -> D -> E
|
|
// its length is 5
|
|
// the following code also yields this result
|
|
|
|
// with the above time windows, this path is infeasible
|
|
// now, there are two shortest paths that are also feasible with respect to
|
|
// the vertex time windows:
|
|
// A -> C -> B -> D -> E and
|
|
// A -> C -> B -> E
|
|
// however, the latter has a longer total travel time and is therefore not
|
|
// pareto-optimal, i.e., it is dominated by the former path
|
|
// therefore, the code below returns only the former path
|
|
|
|
// spp without resource constraints
|
|
graph_traits< SPPRC_Example_Graph >::vertex_descriptor s = A;
|
|
graph_traits< SPPRC_Example_Graph >::vertex_descriptor t = E;
|
|
|
|
std::vector<
|
|
std::vector< graph_traits< SPPRC_Example_Graph >::edge_descriptor > >
|
|
opt_solutions;
|
|
std::vector< spp_no_rc_res_cont > pareto_opt_rcs_no_rc;
|
|
|
|
r_c_shortest_paths(g, get(&SPPRC_Example_Graph_Vert_Prop::num, g),
|
|
get(&SPPRC_Example_Graph_Arc_Prop::num, g), s, t, opt_solutions,
|
|
pareto_opt_rcs_no_rc, spp_no_rc_res_cont(0), ref_no_res_cont(),
|
|
dominance_no_res_cont(),
|
|
std::allocator< r_c_shortest_paths_label< SPPRC_Example_Graph,
|
|
spp_no_rc_res_cont > >(),
|
|
default_r_c_shortest_paths_visitor());
|
|
|
|
std::cout << "SPP without resource constraints:" << std::endl;
|
|
std::cout << "Number of optimal solutions: ";
|
|
std::cout << static_cast< int >(opt_solutions.size()) << std::endl;
|
|
for (int i = 0; i < static_cast< int >(opt_solutions.size()); ++i)
|
|
{
|
|
std::cout << "The " << i << "th shortest path from A to E is: ";
|
|
std::cout << std::endl;
|
|
for (int j = static_cast< int >(opt_solutions[i].size()) - 1; j >= 0;
|
|
--j)
|
|
std::cout << name[source(opt_solutions[i][j], g)] << std::endl;
|
|
std::cout << "E" << std::endl;
|
|
std::cout << "Length: " << pareto_opt_rcs_no_rc[i].cost << std::endl;
|
|
}
|
|
std::cout << std::endl;
|
|
|
|
// spptw
|
|
std::vector<
|
|
std::vector< graph_traits< SPPRC_Example_Graph >::edge_descriptor > >
|
|
opt_solutions_spptw;
|
|
std::vector< spp_spptw_res_cont > pareto_opt_rcs_spptw;
|
|
|
|
r_c_shortest_paths(g, get(&SPPRC_Example_Graph_Vert_Prop::num, g),
|
|
get(&SPPRC_Example_Graph_Arc_Prop::num, g), s, t, opt_solutions_spptw,
|
|
pareto_opt_rcs_spptw, spp_spptw_res_cont(0, 0), ref_spptw(),
|
|
dominance_spptw(),
|
|
std::allocator< r_c_shortest_paths_label< SPPRC_Example_Graph,
|
|
spp_spptw_res_cont > >(),
|
|
default_r_c_shortest_paths_visitor());
|
|
|
|
std::cout << "SPP with time windows:" << std::endl;
|
|
std::cout << "Number of optimal solutions: ";
|
|
std::cout << static_cast< int >(opt_solutions.size()) << std::endl;
|
|
for (int i = 0; i < static_cast< int >(opt_solutions.size()); ++i)
|
|
{
|
|
std::cout << "The " << i << "th shortest path from A to E is: ";
|
|
std::cout << std::endl;
|
|
for (int j = static_cast< int >(opt_solutions_spptw[i].size()) - 1;
|
|
j >= 0; --j)
|
|
std::cout << name[source(opt_solutions_spptw[i][j], g)]
|
|
<< std::endl;
|
|
std::cout << "E" << std::endl;
|
|
std::cout << "Length: " << pareto_opt_rcs_spptw[i].cost << std::endl;
|
|
std::cout << "Time: " << pareto_opt_rcs_spptw[i].time << std::endl;
|
|
}
|
|
|
|
// utility function check_r_c_path example
|
|
std::cout << std::endl;
|
|
bool b_is_a_path_at_all = false;
|
|
bool b_feasible = false;
|
|
bool b_correctly_extended = false;
|
|
spp_spptw_res_cont actual_final_resource_levels(0, 0);
|
|
graph_traits< SPPRC_Example_Graph >::edge_descriptor ed_last_extended_arc;
|
|
check_r_c_path(g, opt_solutions_spptw[0], spp_spptw_res_cont(0, 0), true,
|
|
pareto_opt_rcs_spptw[0], actual_final_resource_levels, ref_spptw(),
|
|
b_is_a_path_at_all, b_feasible, b_correctly_extended,
|
|
ed_last_extended_arc);
|
|
if (!b_is_a_path_at_all)
|
|
std::cout << "Not a path." << std::endl;
|
|
if (!b_feasible)
|
|
std::cout << "Not a feasible path." << std::endl;
|
|
if (!b_correctly_extended)
|
|
std::cout << "Not correctly extended." << std::endl;
|
|
if (b_is_a_path_at_all && b_feasible && b_correctly_extended)
|
|
{
|
|
std::cout << "Actual final resource levels:" << std::endl;
|
|
std::cout << "Length: " << actual_final_resource_levels.cost
|
|
<< std::endl;
|
|
std::cout << "Time: " << actual_final_resource_levels.time << std::endl;
|
|
std::cout << "OK." << std::endl;
|
|
}
|
|
|
|
return 0;
|
|
}
|