boost/libs/fusion/doc/tuple.qbk
2018-01-12 21:47:58 +01:00

288 lines
9.5 KiB
Plaintext

[/==============================================================================
Copyright (C) 2001-2011 Joel de Guzman
Copyright (C) 2006 Dan Marsden
Use, modification and distribution is subject to the Boost Software
License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
===============================================================================/]
[section Tuple]
The TR1 technical report describes extensions to the C++ standard library.
Many of these extensions will be considered for the next
iteration of the C++ standard. TR1 describes a tuple type, and
support for treating `std::pair` as a type of tuple.
Fusion provides full support for the __tr1__tuple__ interface, and the extended
uses of `std::pair` described in the TR1 document.
[section Class template tuple]
Fusion's implementation of the __tr1__tuple__ is also a fusion __forward_sequence__.
As such the fusion tuple type provides a lot of functionality beyond that required by TR1.
Currently tuple is basically a synonym for __vector__, although this may be changed
in future releases of fusion.
[heading Header]
#include <boost/fusion/tuple.hpp>
#include <boost/fusion/include/tuple.hpp>
#include <boost/fusion/tuple/tuple.hpp>
#include <boost/fusion/tuple/tuple_fwd.hpp>
#include <boost/fusion/include/tuple_fwd.hpp>
// for creation function
#include <boost/fusion/tuple/tuple_tie.hpp>
#include <boost/fusion/include/tuple_tie.hpp>
#include <boost/fusion/tuple/make_tuple.hpp>
#include <boost/fusion/include/make_tuple.hpp>
[heading Synopsis]
template<
typename T1 = __unspecified__,
typename T2 = __unspecified__,
...
typename TN = __unspecified__>
class tuple;
[section Construction]
[heading Description]
The __tr1__tuple__ type provides a default constructor, a constructor that takes initializers for all of its elements, a copy constructor, and a converting copy constructor. The details of the various constructors are described in this section.
[heading Specification]
[variablelist Notation
[[`T1 ... TN`, `U1 ... UN`][Tuple element types]]
[[`P1 ... PN`] [Parameter types]]
[[`Ti`, `Ui`] [The type of the `i`th element of a tuple]]
[[`Pi`] [The type of the `i`th parameter]]
]
tuple();
[*Requirements]: Each `Ti` is default-constructible.
[*Semantics]: Default initializes each element of the tuple.
tuple(P1,P2,...,PN);
[*Requirements]: Each `Pi` is `Ti` if `Ti` is a reference type, `const Ti&` otherwise.
[*Semantics]: Copy initializes each element with the corresponding parameter.
tuple(const tuple& t);
[*Requirements]: Each `Ti` should be copy-constructible.
[*Semantics]: Copy constructs each element of `*this` with the corresponding element of `t`.
template<typename U1, typename U2, ..., typename UN>
tuple(const tuple<U1, U2, ..., UN>& t);
[*Requirements]: Each `Ti` shall be constructible from the corresponding `Ui`.
[*Semantics]: Constructs each element of `*this` with the corresponding element of `t`.
[endsect]
[section Tuple creation functions]
[heading Description]
TR1 describes 2 utility functions for creating __tr1__tuple__. `make_tuple` builds a tuple out of it's argument list, and `tie` builds a tuple of references to it's arguments. The details of these creation functions are described in this section.
[heading Specification]
template<typename T1, typename T2, ..., typename TN>
tuple<V1, V2, ..., VN>
make_tuple(const T1& t1, const T2& t2, ..., const TN& tn);
Where `Vi` is `X&` if the cv-unqualified type `Ti` is `reference_wrapper<X>`, otherwise `Vi` is `Ti`.
[*Returns]: `tuple<V1, V2, ..., VN>(t1, t2, ..., tN)`
template<typename T1, typename T2, ..., typename TN>
tuple<T1&, T2&, ..., TN&>
tie(T1& t1, T2& t2, ..., TN& tn);
[*Returns]: tuple<T1&, T2&, ..., TN&>(t1, t2, ..., tN). When argument `ti` is `ignore`, assigning any value to the corresponding tuple element has no effect.
[endsect]
[section Tuple helper classes]
[heading Description]
The __tr1__tuple__ provides 2 helper traits, for compile time access to the tuple size, and the element types.
[heading Specification]
tuple_size<T>::value
[*Requires]: `T` is any fusion sequence type, including `tuple`.
[*Type]: __mpl_integral_constant__
[*Value]: The number of elements in the sequence. Equivalent to `__result_of_size__<T>::type`.
tuple_element<I, T>::type
[*Requires]: `T` is any fusion sequence type, including `tuple`. `0 <= I < N` or the program is ill formed.
[*Value]: The type of the `I`th element of `T`. Equivalent to `__result_of_value_at__<I,T>::type`.
[endsect]
[section Element access]
[heading Description]
The __tr1__tuple__ provides the `get` function to provide access to it's elements by zero based numeric index.
[heading Specification]
template<int I, T>
RJ get(T& t);
[*Requires]: `0 < I <= N`. The program is ill formed if `I` is out of bounds.
`T` is any fusion sequence type, including `tuple`.
[*Return type]: `RJ` is equivalent to `__result_of_at_c__<I,T>::type`.
[*Returns]: A reference to the `I`th element of `T`.
template<int I, typename T>
PJ get(T const& t);
[*Requires]: `0 < I <= N`. The program is ill formed if `I` is out of bounds.
`T` is any fusion sequence type, including `tuple`.
[*Return type]: `PJ` is equivalent to `__result_of_at_c__<I,T>::type`.
[*Returns]: A const reference to the `I`th element of `T`.
[endsect]
[section Relational operators]
[heading Description]
The __tr1__tuple__ provides the standard boolean relational operators.
[heading Specification]
[variablelist Notation
[[`T1 ... TN`, `U1 ... UN`][Tuple element types]]
[[`P1 ... PN`] [Parameter types]]
[[`Ti`, `Ui`] [The type of the `i`th element of a tuple]]
[[`Pi`] [The type of the `i`th parameter]]
]
template<typename T1, typename T2, ..., typename TN,
typename U1, typename U2, ..., typename UN>
bool operator==(
const tuple<T1, T2, ..., TN>& lhs,
const tuple<U1, U2, ..., UN>& rhs);
[*Requirements]: For all `i`, `1 <= i < N`, `__tuple_get__<i>(lhs) == __tuple_get__<i>(rhs)` is a valid
expression returning a type that is convertible to `bool`.
[*Semantics]: Returns `true` if and only if `__tuple_get__<i>(lhs) == __tuple_get__<i>(rhs)` for all `i`.
For any 2 zero length tuples `e` and `f`, `e == f` returns `true`.
template<typename T1, typename T2, ..., typename TN,
typename U1, typename U2, ..., typename UN>
bool operator<(
const tuple<T1, T2, ..., TN>& lhs,
const tuple<U1, U2, ..., UN>& rhs);
[*Requirements]: For all `i`, `1 <= i < N`, `__tuple_get__<i>(lhs) < __tuple_get__<i>(rhs)` is a valid
expression returning a type that is convertible to `bool`.
[*Semantics]: Returns the lexicographical comparison of between `lhs` and `rhs`.
template<typename T1, typename T2, ..., typename TN,
typename U1, typename U2, ..., typename UN>
bool operator!=(
const tuple<T1, T2, ..., TN>& lhs,
const tuple<U1, U2, ..., UN>& rhs);
[*Requirements]: For all `i`, `1 <= i < N`, `__tuple_get__<i>(lhs) == __tuple_get__<i>(rhs)` is a valid
expression returning a type that is convertible to `bool`.
[*Semantics]: Returns `!(lhs == rhs)`.
template<typename T1, typename T2, ..., typename TN,
typename U1, typename U2, ..., typename UN>
bool operator<=(
const tuple<T1, T2, ..., TN>& lhs,
const tuple<U1, U2, ..., UN>& rhs);
[*Requirements]: For all `i`, `1 <= i < N`, `__tuple_get__<i>(rhs) < __tuple_get__<i>(lhs)` is a valid
expression returning a type that is convertible to `bool`.
[*Semantics]: Returns `!(rhs < lhs)`
template<typename T1, typename T2, ..., typename TN,
typename U1, typename U2, ..., typename UN>
bool operator>(
const tuple<T1, T2, ..., TN>& lhs,
const tuple<U1, U2, ..., UN>& rhs);
[*Requirements]: For all `i`, `1 <= i < N`, `__tuple_get__<i>(rhs) < __tuple_get__<i>(lhs)` is a valid
expression returning a type that is convertible to `bool`.
[*Semantics]: Returns `rhs < lhs`.
template<typename T1, typename T2, ..., typename TN,
typename U1, typename U2, ..., typename UN>
bool operator>=(
const tuple<T1, T2, ..., TN>& lhs,
const tuple<U1, U2, ..., UN>& rhs);
[*Requirements]: For all `i`, `1 <= i < N`, `__tuple_get__<i>(lhs) < __tuple_get__<i>(rhs)` is a valid
expression returning a type that is convertible to `bool`.
[*Semantics]: Returns `!(lhs < rhs)`.
[endsect]
[endsect]
[section Pairs]
[heading Description]
The __tr1__tuple__ interface is specified to provide uniform access to `std::pair` as if it were a 2 element tuple.
[heading Specification]
tuple_size<std::pair<T1, T2> >::value
[*Type]: An __mpl_integral_constant__
[*Value]: Returns 2, the number of elements in a pair.
tuple_element<0, std::pair<T1, T2> >::type
[*Type]: `T1`
[*Value]: Returns the type of the first element of the pair
tuple_element<1, std::pair<T1, T2> >::type
[*Type]: `T2`
[*Value]: Returns the type of the second element of the pair
template<int I, typename T1, typename T2>
P& get(std::pair<T1, T2>& pr);
template<int I, typename T1, typename T2>
const P& get(const std::pair<T1, T2>& pr);
[*Type]: If `I == 0` `P` is `T1`, else if `I == 1` `P` is `T2` else the program is ill-formed.
[*Returns: `pr.first` if `I == 0` else `pr.second`.
[endsect]
[endsect]