boost/libs/compute/example/qimage_blur.cpp
2018-01-12 21:47:58 +01:00

146 lines
4.7 KiB
C++

//---------------------------------------------------------------------------//
// Copyright (c) 2014 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#include <iostream>
#include <algorithm>
#include <QtGlobal>
#if QT_VERSION >= 0x050000
#include <QtWidgets>
#else
#include <QtGui>
#endif
#ifndef Q_MOC_RUN
#include <boost/compute/system.hpp>
#include <boost/compute/image/image2d.hpp>
#include <boost/compute/interop/qt.hpp>
#include <boost/compute/utility/dim.hpp>
#include <boost/compute/utility/source.hpp>
#endif // Q_MOC_RUN
namespace compute = boost::compute;
inline void box_filter_image(const compute::image2d &input,
compute::image2d &output,
compute::uint_ box_height,
compute::uint_ box_width,
compute::command_queue &queue)
{
using compute::dim;
const compute::context &context = queue.get_context();
// simple box filter kernel source
const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
__kernel void box_filter(__read_only image2d_t input,
__write_only image2d_t output,
uint box_height,
uint box_width)
{
int x = get_global_id(0);
int y = get_global_id(1);
int h = get_image_height(input);
int w = get_image_width(input);
int k = box_width;
int l = box_height;
if(x < k/2 || y < l/2 || x >= w-(k/2) || y >= h-(l/2)){
write_imagef(output, (int2)(x, y), (float4)(0, 0, 0, 1));
}
else {
const sampler_t sampler = CLK_ADDRESS_NONE | CLK_FILTER_NEAREST;
float4 sum = { 0, 0, 0, 0 };
for(int i = 0; i < k; i++){
for(int j = 0; j < l; j++){
sum += read_imagef(input, sampler, (int2)(x+i-k, y+j-l));
}
}
sum /= (float) k * l;
float4 value = (float4)( sum.x, sum.y, sum.z, 1.f );
write_imagef(output, (int2)(x, y), value);
}
}
);
// build box filter program
compute::program program =
compute::program::create_with_source(source, context);
program.build();
// setup box filter kernel
compute::kernel kernel(program, "box_filter");
kernel.set_arg(0, input);
kernel.set_arg(1, output);
kernel.set_arg(2, box_height);
kernel.set_arg(3, box_width);
// execute the box filter kernel
queue.enqueue_nd_range_kernel(kernel, dim(0, 0), input.size(), dim(1, 1));
}
// this example shows how to load an image using Qt, apply a simple
// box blur filter, and then display it in a Qt window.
int main(int argc, char *argv[])
{
QApplication app(argc, argv);
// check command line
if(argc < 2){
std::cout << "usage: qimage_blur [FILENAME]" << std::endl;
return -1;
}
// load image using Qt
QString fileName = argv[1];
QImage qimage(fileName);
size_t height = qimage.height();
size_t width = qimage.width();
size_t bytes_per_line = qimage.bytesPerLine();
qDebug() << "height:" << height
<< "width:" << width
<< "bytes per line:" << bytes_per_line
<< "depth:" << qimage.depth()
<< "format:" << qimage.format();
// create compute context
compute::device gpu = compute::system::default_device();
compute::context context(gpu);
compute::command_queue queue(context, gpu);
std::cout << "device: " << gpu.name() << std::endl;
// get the opencl image format for the qimage
compute::image_format format =
compute::qt_qimage_format_to_image_format(qimage.format());
// create input and output images on the gpu
compute::image2d input_image(context, width, height, format);
compute::image2d output_image(context, width, height, format);
// copy host qimage to gpu image
compute::qt_copy_qimage_to_image2d(qimage, input_image, queue);
// apply box filter
box_filter_image(input_image, output_image, 7, 7, queue);
// copy gpu blurred image from to host qimage
compute::qt_copy_image2d_to_qimage(output_image, qimage, queue);
// show image as a pixmap
QLabel label;
label.setPixmap(QPixmap::fromImage(qimage));
label.show();
return app.exec();
}