boost/libs/atomic/test/atomicity.cpp
2021-10-05 21:37:46 +02:00

284 lines
8.7 KiB
C++

// Copyright (c) 2011 Helge Bahmann
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Attempt to determine whether the operations on atomic variables
// do in fact behave atomically: Let multiple threads race modifying
// a shared atomic variable and verify that it behaves as expected.
//
// We assume that "observable race condition" events are exponentially
// distributed, with unknown "average time between observable races"
// (which is just the reciprocal of exp distribution parameter lambda).
// Use a non-atomic implementation that intentionally exhibits a
// (hopefully tight) race to compute the maximum-likelihood estimate
// for this time. From this, compute an estimate that covers the
// unknown value with 0.995 confidence (using chi square quantile).
//
// Use this estimate to pick a timeout for the race tests of the
// atomic implementations such that under the assumed distribution
// we get 0.995 probability to detect a race (if there is one).
//
// Overall this yields 0.995 * 0.995 > 0.99 confidence that the
// operations truly behave atomic if this test program does not
// report an error.
#include <boost/atomic.hpp>
#include <cstddef>
#include <algorithm>
#include <boost/config.hpp>
#include <boost/ref.hpp>
#include <boost/function.hpp>
#include <boost/bind/bind.hpp>
#include <boost/date_time/posix_time/posix_time_types.hpp>
#include <boost/thread/thread.hpp>
#include <boost/thread/thread_time.hpp>
#include <boost/thread/lock_guard.hpp>
#include <boost/thread/lock_types.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition_variable.hpp>
#include <boost/core/lightweight_test.hpp>
/* helper class to let two instances of a function race against each
other, with configurable timeout and early abort on detection of error */
class concurrent_runner
{
public:
/* concurrently run the function in two threads, until either timeout
or one of the functions returns "false"; returns true if timeout
was reached, or false if early abort and updates timeout accordingly */
static bool execute(const boost::function<bool(std::size_t)> & fn, boost::posix_time::time_duration & timeout)
{
concurrent_runner runner(fn);
runner.wait_finish(timeout);
return !runner.failure();
}
concurrent_runner(const boost::function<bool(std::size_t)> & fn) :
finished_(false), failure_(false)
{
boost::thread(boost::bind(&concurrent_runner::thread_function, this, fn, 0)).swap(first_thread_);
boost::thread(boost::bind(&concurrent_runner::thread_function, this, fn, 1)).swap(second_thread_);
}
void wait_finish(boost::posix_time::time_duration & timeout)
{
boost::system_time start = boost::get_system_time();
boost::system_time end = start + timeout;
{
boost::unique_lock< boost::mutex > guard(m_);
while (boost::get_system_time() < end && !finished())
c_.timed_wait(guard, end);
}
finished_.store(true, boost::memory_order_relaxed);
first_thread_.join();
second_thread_.join();
boost::posix_time::time_duration duration = boost::get_system_time() - start;
if (duration < timeout)
timeout = duration;
}
bool finished(void) const BOOST_NOEXCEPT_OR_NOTHROW
{
return finished_.load(boost::memory_order_relaxed);
}
bool failure(void) const BOOST_NOEXCEPT_OR_NOTHROW
{
return failure_;
}
private:
void thread_function(boost::function<bool(std::size_t)> function, std::size_t instance)
{
while (!finished())
{
if (!function(instance))
{
boost::lock_guard< boost::mutex > guard(m_);
failure_ = true;
finished_.store(true, boost::memory_order_relaxed);
c_.notify_all();
break;
}
}
}
private:
boost::mutex m_;
boost::condition_variable c_;
boost::atomic<bool> finished_;
bool failure_;
boost::thread first_thread_;
boost::thread second_thread_;
};
bool racy_add(volatile unsigned int & value, std::size_t instance)
{
std::size_t shift = instance * 8;
unsigned int mask = 0xff << shift;
for (std::size_t n = 0; n < 255; ++n)
{
unsigned int tmp = value;
value = tmp + (1 << shift);
if ((tmp & mask) != (n << shift))
return false;
}
unsigned int tmp = value;
value = tmp & ~mask;
if ((tmp & mask) != mask)
return false;
return true;
}
/* compute estimate for average time between races being observable, in usecs */
double estimate_avg_race_time(void)
{
double sum = 0.0;
/* take 10 samples */
for (std::size_t n = 0; n < 10; ++n)
{
boost::posix_time::time_duration timeout(0, 0, 10);
volatile unsigned int value(0);
bool success = concurrent_runner::execute(
boost::bind(racy_add, boost::ref(value), boost::placeholders::_1),
timeout
);
if (success)
{
BOOST_ERROR("Failed to establish baseline time for reproducing race condition");
}
sum = sum + timeout.total_microseconds();
}
/* determine maximum likelihood estimate for average time between
race observations */
double avg_race_time_mle = (sum / 10);
/* pick 0.995 confidence (7.44 = chi square 0.995 confidence) */
double avg_race_time_995 = avg_race_time_mle * 2 * 10 / 7.44;
return avg_race_time_995;
}
template<typename value_type, std::size_t shift_>
bool test_arithmetic(boost::atomic<value_type> & shared_value, std::size_t instance)
{
std::size_t shift = instance * 8;
value_type mask = 0xff << shift;
value_type increment = 1 << shift;
value_type expected = 0;
for (std::size_t n = 0; n < 255; ++n)
{
value_type tmp = shared_value.fetch_add(increment, boost::memory_order_relaxed);
if ( (tmp & mask) != (expected << shift) )
return false;
++expected;
}
for (std::size_t n = 0; n < 255; ++n)
{
value_type tmp = shared_value.fetch_sub(increment, boost::memory_order_relaxed);
if ( (tmp & mask) != (expected << shift) )
return false;
--expected;
}
return true;
}
template<typename value_type, std::size_t shift_>
bool test_bitops(boost::atomic<value_type> & shared_value, std::size_t instance)
{
std::size_t shift = instance * 8;
value_type mask = 0xff << shift;
value_type expected = 0;
for (std::size_t k = 0; k < 8; ++k)
{
value_type mod = 1u << k;
value_type tmp = shared_value.fetch_or(mod << shift, boost::memory_order_relaxed);
if ( (tmp & mask) != (expected << shift))
return false;
expected = expected | mod;
}
for (std::size_t k = 0; k < 8; ++k)
{
value_type tmp = shared_value.fetch_and(~(1u << (shift + k)), boost::memory_order_relaxed);
if ( (tmp & mask) != (expected << shift))
return false;
expected = expected & ~(1u << k);
}
for (std::size_t k = 0; k < 8; ++k)
{
value_type mod = 255u ^ (1u << k);
value_type tmp = shared_value.fetch_xor(mod << shift, boost::memory_order_relaxed);
if ( (tmp & mask) != (expected << shift))
return false;
expected = expected ^ mod;
}
value_type tmp = shared_value.fetch_and(~mask, boost::memory_order_relaxed);
if ( (tmp & mask) != (expected << shift) )
return false;
return true;
}
int main(int, char *[])
{
double avg_race_time = estimate_avg_race_time();
/* 5.298 = 0.995 quantile of exponential distribution */
const boost::posix_time::time_duration timeout = boost::posix_time::microseconds((long)(5.298 * avg_race_time));
{
boost::atomic<unsigned int> value(0);
/* testing two different operations in this loop, therefore
enlarge timeout */
boost::posix_time::time_duration tmp(timeout * 2);
bool success = concurrent_runner::execute(
boost::bind(test_arithmetic<unsigned int, 0>, boost::ref(value), boost::placeholders::_1),
tmp
);
BOOST_TEST(success); // concurrent arithmetic error
}
{
boost::atomic<unsigned int> value(0);
/* testing three different operations in this loop, therefore
enlarge timeout */
boost::posix_time::time_duration tmp(timeout * 3);
bool success = concurrent_runner::execute(
boost::bind(test_bitops<unsigned int, 0>, boost::ref(value), boost::placeholders::_1),
tmp
);
BOOST_TEST(success); // concurrent bit operations error
}
return boost::report_errors();
}