/* [auto_generated] libs/numeric/odeint/test/stepper_with_ranges.cpp [begin_description] This file tests if the steppers play well with Boost.Range. [end_description] Copyright 2011-2012 Karsten Ahnert Copyright 2011-2013 Mario Mulansky Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) */ // disable checked iterator warning for msvc #include #ifdef BOOST_MSVC #pragma warning(disable:4996) #endif #define BOOST_TEST_MODULE odeint_stepper_with_ranges #include #include #include #include #include #include #include #include #include #include #include #include #include typedef std::vector< double > state_type; typedef boost::array< double , 3 > state_type2; /* explicitly force range algebra for this array! */ namespace boost { namespace numeric { namespace odeint { template<> struct algebra_dispatcher< state_type2 > { typedef range_algebra algebra_type; }; } } } /* * The two systems are needed, since for steppers with more than * one internal step it is difficult to calculate the exact result * * system1 is suited for euler */ struct system1 { template< class State , class Deriv > void operator()( const State &x_ , Deriv &dxdt_ , double t ) { typename boost::range_iterator< const State >::type x = boost::begin( x_ ); typename boost::range_iterator< Deriv >::type dxdt = boost::begin( dxdt_ ); dxdt[0] = x[0]; dxdt[1] = 2.0; dxdt[2] = 3.0; } template< class State , class Deriv > void operator()( const State &x_ , const Deriv &dxdt_ , double t ) { typename boost::range_iterator< const State >::type x = boost::begin( x_ ); typename boost::range_iterator< Deriv >::type dxdt = boost::begin( dxdt_ ); dxdt[0] = x[0]; dxdt[1] = 2.0; dxdt[2] = 3.0; } }; /* * system2 is suited for all steppers, it allows you to calculate the result analytically. */ struct system2 { template< class State , class Deriv > void operator()( const State &x_ , Deriv &dxdt_ , double t ) { typename boost::range_iterator< Deriv >::type dxdt = boost::begin( dxdt_ ); dxdt[0] = 1.0; dxdt[1] = 2.0; dxdt[2] = 3.0; } template< class State , class Deriv > void operator()( const State &x_ , const Deriv &dxdt_ , double t ) { typename boost::range_iterator< Deriv >::type dxdt = boost::begin( dxdt_ ); dxdt[0] = 1.0; dxdt[1] = 2.0; dxdt[2] = 3.0; } }; /* * Useful for Hamiltonian systems */ struct ham_sys { template< class State , class Deriv > void operator()( const State &x_ , Deriv &dxdt_ ) { typename boost::range_iterator< Deriv >::type dxdt = boost::begin( dxdt_ ); dxdt[0] = 1.0; dxdt[1] = 2.0; dxdt[2] = 3.0; } template< class State , class Deriv > void operator()( const State &x_ , const Deriv &dxdt_ ) { typename boost::range_iterator< Deriv >::type dxdt = boost::begin( dxdt_ ); dxdt[0] = 1.0; dxdt[1] = 2.0; dxdt[2] = 3.0; } }; struct vector_fixture { const static size_t dim = 6; boost::array< double , dim > in; boost::array< double , dim > q; boost::array< double , dim > p; state_type err; vector_fixture( void ) : in() , err( 3 ) { for( size_t i=0 ; i euler; euler.do_step( system1() , std::make_pair( f.in.begin() + 1 , f.in.begin() + 4 ) , 0.1 , 0.1 ); CHECK_VALUES( f.in , 0.0 , 1.1 , 2.2 , 3.3 , 4.0 , 5.0 ); } BOOST_AUTO_TEST_CASE( explicit_error_k54_with_range_v1 ) { vector_fixture f; boost::numeric::odeint::runge_kutta_cash_karp54_classic< state_type > rk54; rk54.do_step( system2() , std::make_pair( f.in.begin() + 1 , f.in.begin() + 4 ) , 0.1 , 0.1 ); CHECK_VALUES( f.in , 0.0 , 1.1 , 2.2 , 3.3 , 4.0 , 5.0 ); } BOOST_AUTO_TEST_CASE( explicit_error_k54_with_range_v5 ) { vector_fixture f; boost::numeric::odeint::runge_kutta_cash_karp54_classic< state_type > rk54; rk54.do_step( system2() , std::make_pair( f.in.begin() + 1 , f.in.begin() + 4 ) , 0.1 , 0.1 , f.err ); CHECK_VALUES( f.in , 0.0 , 1.1 , 2.2 , 3.3 , 4.0 , 5.0 ); } BOOST_AUTO_TEST_CASE( runge_kutta_dopri5_with_range_v1 ) { vector_fixture f; boost::numeric::odeint::runge_kutta_dopri5< state_type > dopri5; dopri5.do_step( system2() , std::make_pair( f.in.begin() + 1 , f.in.begin() + 4 ) , 0.1 , 0.1 ); CHECK_VALUES( f.in , 0.0 , 1.1 , 2.2 , 3.3 , 4.0 , 5.0 ); } BOOST_AUTO_TEST_CASE( runge_kutta_dopri5_with_range_v5 ) { vector_fixture f; boost::numeric::odeint::runge_kutta_dopri5< state_type > dopri5; dopri5.do_step( system2() , std::make_pair( f.in.begin() + 1 , f.in.begin() + 4 ) , 0.1 , 0.1 , f.err ); CHECK_VALUES( f.in , 0.0 , 1.1 , 2.2 , 3.3 , 4.0 , 5.0 ); } BOOST_AUTO_TEST_CASE( controlled_error_stepper_rk54 ) { double t = 0.0 , dt = 0.1; vector_fixture f; boost::numeric::odeint::controlled_runge_kutta< boost::numeric::odeint::runge_kutta_cash_karp54_classic< state_type > > stepper; stepper.try_step( system2() , std::make_pair( f.in.begin() + 1 , f.in.begin() + 4 ) , t , dt ); CHECK_VALUES( f.in , 0.0 , 1.1 , 2.2 , 3.3 , 4.0 , 5.0 ); } BOOST_AUTO_TEST_CASE( controlled_error_stepper_dopri5 ) { double t = 0.0 , dt = 0.1; vector_fixture f; boost::numeric::odeint::controlled_runge_kutta< boost::numeric::odeint::runge_kutta_dopri5< state_type > > stepper; stepper.try_step( system2() , std::make_pair( f.in.begin() + 1 , f.in.begin() + 4 ) , t , dt ); CHECK_VALUES( f.in , 0.0 , 1.1 , 2.2 , 3.3 , 4.0 , 5.0 ); } BOOST_AUTO_TEST_CASE( symplectic_euler_coor_func ) { vector_fixture f; boost::numeric::odeint::symplectic_euler< state_type > euler; euler.do_step( ham_sys() , std::make_pair( f.q.begin() + 1 , f.q.begin() + 4 ) , std::make_pair( f.p.begin() + 3 , f.p.begin() + 6 ) , 0.0 , 0.1 ); CHECK_VALUES( f.q , 0.0 , 1.3 , 2.4 , 3.5 , 4.0 , 5.0 ); CHECK_VALUES( f.p , 0.0 , 1.0 , 2.0 , 3.1 , 4.2 , 5.3 ); } BOOST_AUTO_TEST_CASE( symplectic_euler_coor_and_mom_func ) { vector_fixture f; boost::numeric::odeint::symplectic_euler< state_type > euler; euler.do_step( std::make_pair( ham_sys() , ham_sys() ) , std::make_pair( f.q.begin() + 1 , f.q.begin() + 4 ) , std::make_pair( f.p.begin() + 3 , f.p.begin() + 6 ) , 0.0 , 0.1 ); CHECK_VALUES( f.q , 0.0 , 1.1 , 2.2 , 3.3 , 4.0 , 5.0 ); CHECK_VALUES( f.p , 0.0 , 1.0 , 2.0 , 3.1 , 4.2 , 5.3 ); } BOOST_AUTO_TEST_CASE( dense_output_euler_with_ranges ) { using namespace boost::numeric::odeint; vector_fixture f; dense_output_runge_kutta< euler< state_type > > stepper; stepper.initialize( std::make_pair( f.in.begin() + 1, f.in.begin() + 4 ) , 0.0 , 0.1 ); stepper.do_step( system1() ); stepper.calc_state( 0.05 , std::make_pair( f.in.begin() + 1 ,f.in.begin() +4 ) ); CHECK_VALUES( f.in , 0.0 , 1.05 , 2.1 , 3.15 , 4.0 , 5.0 ); } BOOST_AUTO_TEST_CASE( dense_output_dopri5_with_ranges ) { using namespace boost::numeric::odeint; vector_fixture f; dense_output_runge_kutta< controlled_runge_kutta< runge_kutta_dopri5< state_type > > > stepper; stepper.initialize( std::make_pair( f.in.begin() + 1, f.in.begin() + 4 ) , 0.0 , 0.1 ); stepper.do_step( system2() ); stepper.calc_state( 0.05 , std::make_pair( f.in.begin() + 1 ,f.in.begin() +4 ) ); CHECK_VALUES( f.in , 0.0 , 1.05 , 2.1 , 3.15 , 4.0 , 5.0 ); } BOOST_AUTO_TEST_SUITE_END()