boost.png (6897 bytes)Boost.MultiIndex Ordered indices reference



Contents

Header "boost/multi_index/ordered_index_fwd.hpp" synopsis

namespace boost{

namespace multi_index{

// index specifiers ordered_unique and ordered_non_unique

template<consult ordered_unique reference for arguments>
struct ordered_unique;
template<consult ordered_non_unique reference for arguments>
struct ordered_non_unique;

// indices

namespace detail{

template<implementation defined> class index name is implementation defined;

} // namespace boost::multi_index::detail

} // namespace boost::multi_index 

} // namespace boost

ordered_index_fwd.hpp provides forward declarations for index specifiers ordered_unique and ordered_non_unique and their associated ordered index classes.

Header "boost/multi_index/ordered_index.hpp" synopsis

#include <initializer_list>

namespace boost{

namespace multi_index{

// index specifiers ordered_unique and ordered_non_unique

template<consult ordered_unique reference for arguments>
struct ordered_unique;
template<consult ordered_non_unique reference for arguments>
struct ordered_non_unique;

// indices

namespace detail{

template<implementation defined> class index class name implementation defined;

// index comparison:

// OP is any of ==,<,!=,>,>=,<=

template<arg set 1,arg set 2>
bool operator OP(
  const index class name<arg set 1>& x,const index class name<arg set 2>& y);

// index specialized algorithms:

template<implementation defined>
void swap(index class name& x,index class name& y);

} // namespace boost::multi_index::detail

} // namespace boost::multi_index 

} // namespace boost

Index specifiers ordered_unique and ordered_non_unique

These index specifiers allow for insertion of ordered indices without and with allowance of duplicate elements, respectively. The syntax of ordered_unique and ordered_non_unique coincide, thus we describe them in a grouped manner. ordered_unique and ordered_non_unique can be instantiated in two different forms, according to whether a tag list for the index is provided or not:

template<
  typename KeyFromValue,
  typename Compare=std::less<KeyFromValue::result_type>
>
struct (ordered_unique | ordered_non_unique);

template<
  typename TagList,
  typename KeyFromValue,
  typename Compare=std::less<KeyFromValue::result_type>
>
struct (ordered_unique | ordered_non_unique);

If provided, TagList must be an instantiation of the class template tag. The template arguments are used by the corresponding index implementation, refer to the ordered indices reference section for further explanations on their acceptable type values.

Ordered indices

An ordered index provides a set-like interface to the underlying heap of elements contained in a multi_index_container. An ordered index is particularized according to a given Key Extractor that retrieves keys from elements of multi_index_container and a comparison predicate.

There are two variants of ordered indices: unique, which do not allow duplicate elements (with respect to its associated comparison predicate) and non-unique, which accept those duplicates. The interface of these two variants is the same, so they are documented together, with minor differences explicitly stated when they exist.

Except where noted or if the corresponding interface does not exist, ordered indices (both unique and non-unique) satisfy the C++ requirements for associative containers at [associative.reqmts] (supporting unique and equivalent keys, respectively.) Iterators (including to the end of the index) and pointers and references to an element remain valid during the lifetime of the associated container (which can change upon swapping), or until the referred-to element is erased or extracted; pointers and references to an extracted element, but not so for iterators, become valid again once the element is re-inserted. We only provide descriptions of those types and operations that do not exactly conform to or are not mandated by the standard requirements.

namespace boost{

namespace multi_index{

implementation defined unbounded; // see range()

namespace detail{

template<implementation defined: dependent on types Value, Allocator,
  TagList, KeyFromValue, Compare>
class name is implementation defined
{ 
public:
  // types:

  typedef typename KeyFromValue::result_type         key_type;
  typedef Value                                      value_type;
  typedef KeyFromValue                               key_from_value;
  typedef Compare                                    key_compare;
  typedef implementation defined                     value_compare;
  typedef boost::tuple<key_from_value,key_compare>   ctor_args;
  typedef TagList                                    tag_list;
  typedef Allocator                                  allocator_type;
  typedef typename Allocator::reference              reference;
  typedef typename Allocator::const_reference        const_reference;
  typedef implementation defined                     iterator;
  typedef implementation defined                     const_iterator;
  typedef implementation defined                     size_type;      
  typedef implementation defined                     difference_type;
  typedef typename Allocator::pointer                pointer;
  typedef typename Allocator::const_pointer          const_pointer;
  typedef equivalent to
    std::reverse_iterator<iterator>                  reverse_iterator;
  typedef equivalent to
    std::reverse_iterator<const_iterator>            const_reverse_iterator;
  typedef same as owning container                   node_type;
  typedef following [container.insert.return] spec   insert_return_type;

  // construct/copy/destroy:

  index class name& operator=(const index class name& x);
  index class name& operator=(std::initializer_list<value_type> list);

  allocator_type get_allocator()const noexcept;

  // iterators:

  iterator               begin()noexcept;
  const_iterator         begin()const noexcept;
  iterator               end()noexcept;
  const_iterator         end()const noexcept;
  reverse_iterator       rbegin()noexcept;
  const_reverse_iterator rbegin()const noexcept;
  reverse_iterator       rend()noexcept;
  const_reverse_iterator rend()const noexcept;
  const_iterator         cbegin()const noexcept;
  const_iterator         cend()const noexcept;
  const_reverse_iterator crbegin()const noexcept;
  const_reverse_iterator crend()const noexcept;
 
  iterator       iterator_to(const value_type& x);
  const_iterator iterator_to(const value_type& x)const;

  // capacity:

  bool      empty()const noexcept;
  size_type size()const noexcept;
  size_type max_size()const noexcept;

  // modifiers:

  template<typename... Args>
  std::pair<iterator,bool> emplace(Args&&... args);
  template <typename... Args>
  iterator emplace_hint(iterator position,Args&&... args);
  std::pair<iterator,bool> insert(const value_type& x);
  std::pair<iterator,bool> insert(value_type&& x);
  iterator insert(iterator position,const value_type& x);
  iterator insert(iterator position,value_type&& x);
  template<typename InputIterator>
  void insert(InputIterator first,InputIterator last);
  void insert(std::initializer_list<value_type> list);
  insert_return_type insert(node_type&& nh);
  iterator insert(const_iterator position,node_type&& nh);

  node_type extract(const_iterator position);
  node_type extract(const key_type& x);

  iterator  erase(iterator position);
  size_type erase(const key_type& x);
  iterator  erase(iterator first,iterator last);

  bool replace(iterator position,const value_type& x);
  bool replace(iterator position,value_type&& x);
  template<typename Modifier> bool modify(iterator position,Modifier mod);
  template<typename Modifier,typename Rollback>
  bool modify(iterator position,Modifier mod,Rollback back);
  template<typename Modifier> bool modify_key(iterator position,Modifier mod);
  template<typename Modifier,typename Rollback>
  bool modify_key(iterator position,Modifier mod,Rollback back);
  
  void swap(index class name& x);
  void clear()noexcept;

  // observers:

  key_from_value key_extractor()const;
  key_compare    key_comp()const;
  value_compare  value_comp()const;

  // set operations:

  template<typename CompatibleKey>
  iterator find(const CompatibleKey& x)const;
  template<typename CompatibleKey,typename CompatibleCompare>
  iterator find(
    const CompatibleKey& x,const CompatibleCompare& comp)const;

  template<typename CompatibleKey>
  size_type count(const CompatibleKey& x)const;
  template<typename CompatibleKey,typename CompatibleCompare>
  size_type count(const CompatibleKey& x,const CompatibleCompare& comp)const;

  template<typename CompatibleKey>
  iterator lower_bound(const CompatibleKey& x)const;
  template<typename CompatibleKey,typename CompatibleCompare>
  iterator lower_bound(
    const CompatibleKey& x,const CompatibleCompare& comp)const;

  template<typename CompatibleKey>
  iterator upper_bound(const CompatibleKey& x)const;
  template<typename CompatibleKey,typename CompatibleCompare>
  iterator upper_bound(
    const CompatibleKey& x,const CompatibleCompare& comp)const;

  template<typename CompatibleKey>
  std::pair<iterator,iterator> equal_range(
    const CompatibleKey& x)const;
  template<typename CompatibleKey,typename CompatibleCompare>
  std::pair<iterator,iterator> equal_range(
    const CompatibleKey& x,const CompatibleCompare& comp)const;

  // range:

  template<typename LowerBounder,typename UpperBounder>
  std::pair<iterator,iterator> range(
    LowerBounder lower,UpperBounder upper)const;
};

// index comparison:

template<arg set 1,arg set 2>
bool operator==(
  const index class name<arg set 1>& x,
  const index class name<arg set 2>& y)
{
  return x.size()==y.size()&&std::equal(x.begin(),x.end(),y.begin());
}

template<arg set 1,arg set 2>
bool operator<(
  const index class name<arg set 1>& x,
  const index class name<arg set 2>& y)
{
  return std::lexicographical_compare(x.begin(),x.end(),y.begin(),y.end());
}

template<arg set 1,arg set 2>
bool operator!=(
  const index class name<arg set 1>& x,
  const index class name<arg set 2>& y)
{
  return !(x==y);
}

template<arg set 1,arg set 2>
bool operator>(
  const index class name<arg set 1>& x,
  const index class name<arg set 2>& y)
{
  return y<x;
}

template<arg set 1,arg set 2>
bool operator>=(
  const index class name<arg set 1>& x,
  const index class name<arg set 2>& y)
{
  return !(x<y);
}

template<arg set 1,arg set 2>
bool operator<=(
  const index class name<arg set 1>& x,
  const index class name<arg set 2>& y)
{
  return !(x>y);
}

// index specialized algorithms:

template<implementation defined>
void swap(index class name& x,index class name& y);

} // namespace boost::multi_index::detail

} // namespace boost::multi_index 

} // namespace boost

Complexity signature

Here and in the descriptions of operations of ordered indices, we adopt the scheme outlined in the complexity signature section. The complexity signature of ordered indices is:

Instantiation types

Ordered indices are instantiated internally to multi_index_container and specified by means of indexed_by with index specifiers ordered_unique and ordered_non_unique. Instantiations are dependent on the following types:

TagList must be an instantiation of tag. The type KeyFromValue, which determines the mechanism for extracting a key from Value, must be a model of Key Extractor from Value. Compare is a CopyConstructible binary predicate inducing a strict weak order on elements of KeyFromValue::result_type.

Constructors, copy and assignment

As explained in the index concepts section, indices do not have public constructors or destructors. Assignment, on the other hand, is provided.

index class name& operator=(const index class name& x);
Effects:
a=b;
where a and b are the multi_index_container objects to which *this and x belong, respectively.
Returns: *this.
index class name& operator=(std::initializer_list<value_type> list);
Effects:
a=list;
where a is the multi_index_container object to which *this belongs.
Returns: *this.

Iterators

iterator       iterator_to(const value_type& x);
const_iterator iterator_to(const value_type& x)const;
Requires: x is a reference to an element of the container.
Returns: An iterator to x.
Complexity: Constant.
Exception safety: nothrow.

Modifiers

template<typename... Args>
std::pair<iterator,bool> emplace(Args&&... args);
Requires: value_type is EmplaceConstructible into multi_index_container from args.
Effects: Inserts a value_type object constructed with std::forward<Args>(args)... into the multi_index_container to which the index belongs if Returns: The return value is a pair p. p.second is true if and only if insertion took place. On successful insertion, p.first points to the element inserted; otherwise, p.first points to an element that caused the insertion to be banned. Note that more than one element can be causing insertion not to be allowed.
Complexity: O(I(n)).
Exception safety: Strong.
template<typename... Args>
iterator emplace_hint(iterator position, Args&&... args);
Requires: value_type is EmplaceConstructible into multi_index_container from args. position is a valid iterator of the index.
Effects: Inserts a value_type object constructed with std::forward<Args>(args)... into the multi_index_container to which the index belongs if position is used as a hint to improve the efficiency of the operation. If successful, insertion happens as close as possible to the location just prior to position.
Returns: On successful insertion, an iterator to the newly inserted element. Otherwise, an iterator to an element that caused the insertion to be banned. Note that more than one element can be causing insertion not to be allowed.
Complexity: O(H(n)).
Exception safety: Strong.
std::pair<iterator,bool> insert(const value_type& x);
std::pair<iterator,bool> insert(value_type&& x);
Requires (first version): value_type is CopyInsertable into multi_index_container.
Requires (second version): value_type is MoveInsertable into multi_index_container.
Effects: Inserts x into the multi_index_container to which the index belongs if Returns: The return value is a pair p. p.second is true if and only if insertion took place. On successful insertion, p.first points to the element inserted; otherwise, p.first points to an element that caused the insertion to be banned. Note that more than one element can be causing insertion not to be allowed.
Complexity: O(I(n)).
Exception safety: Strong.
iterator insert(iterator position,const value_type& x);
iterator insert(iterator position,value_type&& x);
Requires (first version): value_type is CopyInsertable into multi_index_container. position is a valid iterator of the index.
Requires (second version): value_type is MoveInsertable into multi_index_container. position is a valid iterator of the index.
Effects: Inserts x into the multi_index_container to which the index belongs if position is used as a hint to improve the efficiency of the operation. If successful, insertion happens as close as possible to the location just prior to position.
Returns: On successful insertion, an iterator to the newly inserted element. Otherwise, an iterator to an element that caused the insertion to be banned. Note that more than one element can be causing insertion not to be allowed.
Complexity: O(H(n)).
Exception safety: Strong.
template<typename InputIterator>
void insert(InputIterator first,InputIterator last);
Requires: InputIterator is an input iterator. value_type is EmplaceConstructible into multi_index_container from *first. first and last are not iterators into any index of the multi_index_container to which this index belongs. last is reachable from first.
Effects: For each element of [first, last), in this order, inserts it into the multi_index_container to which this index belongs if Complexity: O(m*H(n+m)), where m is the number of elements in [first, last).
Exception safety: Basic.
void insert(std::initializer_list<value_type> list);
Effects:
insert(list.begin(),list.end());
insert_return_type insert(node_type&& nh);
Requires: nh.empty() || get_allocator()==nh.get_allocator().
Effects: Does nothing if nh is empty; otherwise, inserts the node owned by nh into the multi_index_container to which the index belongs if Postconditions: nh is empty.
Returns: A value p of type insert_return_type. If nh is empty, p.position is end(), p.inserted is false and p.node is empty; on successful insertion, p.position points to the element inserted, p.inserted is true and p.node is empty; if the insertion failed, p.position points to an element that caused the insertion to be banned, p.inserted is false and p.node owns the original node. Note that more than one element can be causing insertion not to be allowed.
Complexity: O(I(n)).
Exception safety: Strong. If an exception is thrown, nh is not changed.
iterator insert(const_iterator position,node_type&& nh);
Requires: nh.empty() || get_allocator()==nh.get_allocator(). position is a valid iterator of the index.
Effects: Does nothing if nh is empty; otherwise, inserts the node owned by nh into the multi_index_container to which the index belongs if position is used as a hint to improve the efficiency of the operation. If successful, insertion happens as close as possible to the location just prior to position.
Postconditions: nh is empty if insertion succeeds, and is not changed otherwise.
Returns: end() if nh is empty. On successful insertion, an iterator to the newly inserted element; otherwise, an iterator to an element that caused the insertion to be banned. Note that more than one element can be causing insertion not to be allowed.
Complexity: O(H(n)).
Exception safety: Strong. If an exception is thrown, nh is not changed.
node_type extract(const_iterator position);
Requires: position is a valid dereferenceable iterator of the index.
Effects: Extracts the node of the element pointed to by position.
Returns: A node handle owning the extracted node.
Complexity: O(D(n)).
Exception safety: nothrow.
node_type extract(const key_type& x);
Effects: Extracts the node of the first element with key equivalent to x, if there is any.
Returns: A node handle owning the extracted node, or empty otherwise.
Complexity: O(log(n) + D(n)).
Exception safety: Strong.
iterator erase(iterator position);
Requires: position is a valid dereferenceable iterator of the index.
Effects: Deletes the element pointed to by position.
Returns: An iterator pointing to the element immediately following the one that was deleted, or end() if no such element exists.
Complexity: O(D(n)).
Exception safety: nothrow.
size_type erase(const key_type& x);
Effects: Deletes the elements with key equivalent to x.
Returns: Number of elements deleted.
Complexity: O(log(n) + m*D(n)), where m is the number of elements deleted.
Exception safety: Basic.
iterator erase(iterator first,iterator last);
Requires: [first,last) is a valid range of the index.
Effects: Deletes the elements in [first,last).
Returns: last.
Complexity: O(log(n) + m*D(n)), where m is the number of elements in [first,last).
Exception safety: nothrow.
bool replace(iterator position,const value_type& x);
bool replace(iterator position,value_type&& x);
Requires (first version): value_type is CopyAssignable. position is a valid dereferenceable iterator of the index.
Requires (second version): value_type is MoveAssignable. position is a valid dereferenceable iterator of the index.
Effects: Assigns the value x to the element pointed to by position into the multi_index_container to which the index belongs if, for the value x Postconditions: Validity of position is preserved in all cases. If the key of the new value is equivalent to that of the replaced value, the position of the element does not change.
Returns: true if the replacement took place, false otherwise.
Complexity: O(R(n)).
Exception safety: Strong. If an exception is thrown by some user-provided operation the multi_index_container to which the index belongs remains in its original state.
template<typename Modifier> bool modify(iterator position,Modifier mod);
Requires: mod is a unary function object accepting arguments of type value_type&. position is a valid dereferenceable iterator of the index. The execution of mod(e), where e is the element pointed to by position, does not invoke any operation of the multi_index_container after e is directly modified or, before modification, if the operation would invalidate position.
Effects: Calls mod(e) where e is the element pointed to by position and rearranges *position into all the indices of the multi_index_container. Rearrangement is successful if If the rearrangement fails, the element is erased.
Postconditions: Validity of position is preserved if the operation succeeds. If the key of the modified value is equivalent to that of the original value, the position of the element does not change.
Returns: true if the operation succeeded, false otherwise.
Complexity: O(M(n)).
Exception safety: Basic. If an exception is thrown by some user-provided operation (including mod), then the element pointed to by position is erased.
template<typename Modifier,typename Rollback>
bool modify(iterator position,Modifier mod,Rollback back);
Requires: mod and back are unary function objects accepting arguments of type value_type&. position is a valid dereferenceable iterator of the index. The execution of mod(e), where e is the element pointed to by position, does not invoke any operation of the multi_index_container after e is directly modified or, before modification, if the operation would invalidate position. back(e) does not invoke any operation of the multi_index_container.
Effects: Calls mod(e) where e is the element pointed to by position and tries to rearrange *position into all the indices of the multi_index_container. Rearrangement is successful if If the rearrangement fails, back(e) is invoked: if the resulting value of e is consistent with its original position and constraints in all indices, the element is kept, otherwise it is erased.
Postconditions: Validity of position is preserved except if the element is erased under the conditions described below. If the key of the modified value is equivalent to that of the original value, the position of the element does not change.
Returns: true if the operation succeeded, false otherwise.
Complexity: O(M(n)).
Exception safety: Strong, except if mod or back throw an exception or back(e) fails to properly restore the element or there is a throwing user-provided operation after invoking back(e), in which cases the modified element is erased. If back throws inside the handling code executing after some other user-provided operation has thrown, it is the exception generated by back that is rethrown.
template<typename Modifier> bool modify_key(iterator position,Modifier mod);
Requires: key_from_value is a read/write Key Extractor from value_type. mod is a unary function object accepting arguments of type key_type&. position is a valid dereferenceable iterator of the index. The execution of mod(k), where k is the key of the element pointed to by position, does not invoke any operation of the multi_index_container after k is directly modified or, before modification, if the operation would invalidate position.
Effects: Equivalent to modify(position,mod'), with mod' defined in such a way that mod'(x) is the same as mod(key(x)), where key is the internal KeyFromValue object of the index.
template<typename Modifier,typename Rollback>
bool modify_key(iterator position,Modifier mod,Rollback back);
Requires: key_from_value is a read/write Key Extractor from value_type. mod and back are unary function objects accepting arguments of type key_type&. position is a valid dereferenceable iterator of the index. The execution of mod(k), where k is the key of the element pointed to by position, does not invoke any operation of the multi_index_container after k is directly modified or, before modification, if the operation would invalidate position. back(k) does not invoke any operation of the multi_index_container.
Effects: Equivalent to modify(position,mod',back'), with mod' and back defined in such a way that mod'(x) is the same as mod(key(x)) and back'(x) is the same as back(key(x)), where key is the internal KeyFromValue object of the index.

Observers

Apart from standard key_comp and value_comp, ordered indices have a member function for retrieving the internal key extractor used.

key_from_value key_extractor()const;
Returns a copy of the key_from_value object used to construct the index.
Complexity: Constant.

Set operations

Ordered indices provide the full lookup functionality required by [associative.reqmts], namely find, count, lower_bound, upper_bound and equal_range. Additionally, these member functions are templatized to allow for non-standard arguments, so extending the types of search operations allowed. The kind of arguments permissible when invoking the lookup member functions is defined by the following concept.

Consider a binary predicate Compare inducing a strict weak order over values of type Key. A pair of types (CompatibleKey, CompatibleCompare) is said to be a compatible extension of Compare if

  1. CompatibleCompare is a binary predicate over (Key, CompatibleKey),
  2. CompatibleCompare is a binary predicate over (CompatibleKey, Key),
  3. if c_comp(ck,k1) then !c_comp(k1,ck),
  4. if !c_comp(ck,k1) and !comp(k1,k2) then !c_comp(ck,k2),
  5. if !c_comp(k1,ck) and !comp(k2,k1) then !c_comp(k2,ck),
for every c_comp of type CompatibleCompare, comp of type Compare, ck of type CompatibleKey and k1, k2 of type Key.

Additionally, a type CompatibleKey is said to be a compatible key of Compare if (CompatibleKey, Compare) is a compatible extension of Compare. This implies that Compare, as well as being a strict weak ordering, accepts arguments of type CompatibleKey, which usually means it has several overloads of operator().

In the context of a compatible extension or a compatible key, the expressions "equivalent", "less than" and "greater than" take on their obvious interpretations.

template<typename CompatibleKey> iterator find(const CompatibleKey& x)const;
Requires: CompatibleKey is a compatible key of key_compare.
Effects: Returns a pointer to an element whose key is equivalent to x, or end() if such an element does not exist.
Complexity: O(log(n)).
template<typename CompatibleKey,typename CompatibleCompare>
iterator find(const CompatibleKey& x,const CompatibleCompare& comp)const;
Requires: (CompatibleKey, CompatibleCompare) is a compatible extension of key_compare.
Effects: Returns a pointer to an element whose key is equivalent to x, or end() if such an element does not exist.
Complexity: O(log(n)).
template<typename CompatibleKey> size_type
count(const CompatibleKey& x)const;
Requires: CompatibleKey is a compatible key of key_compare.
Effects: Returns the number of elements with key equivalent to x.
Complexity: O(log(n) + count(x)).
template<typename CompatibleKey,typename CompatibleCompare>
size_type count(const CompatibleKey& x,const CompatibleCompare& comp)const;
Requires: (CompatibleKey, CompatibleCompare) is a compatible extension of key_compare.
Effects: Returns the number of elements with key equivalent to x.
Complexity: O(log(n) + count(x,comp)).
template<typename CompatibleKey>
iterator lower_bound(const CompatibleKey& x)const;
Requires: CompatibleKey is a compatible key of key_compare.
Effects: Returns an iterator pointing to the first element with key not less than x, or end() if such an element does not exist.
Complexity: O(log(n)).
template<typename CompatibleKey,typename CompatibleCompare>
iterator lower_bound(const CompatibleKey& x,const CompatibleCompare& comp)const;
Requires: (CompatibleKey, CompatibleCompare) is a compatible extension of key_compare.
Effects: Returns an iterator pointing to the first element with key not less than x, or end() if such an element does not exist.
Complexity: O(log(n)).
template<typename CompatibleKey>
iterator upper_bound(const CompatibleKey& x)const;
Requires: CompatibleKey is a compatible key of key_compare.
Effects: Returns an iterator pointing to the first element with key greater than x, or end() if such an element does not exist.
Complexity: O(log(n)).
template<typename CompatibleKey,typename CompatibleCompare>
iterator upper_bound(const CompatibleKey& x,const CompatibleCompare& comp)const;
Requires: (CompatibleKey, CompatibleCompare) is a compatible extension of key_compare.
Effects: Returns an iterator pointing to the first element with key greater than x, or end() if such an element does not exist.
Complexity: O(log(n)).
template<typename CompatibleKey>
std::pair<iterator,iterator> equal_range(
  const CompatibleKey& x)const;
Requires: CompatibleKey is a compatible key of key_compare.
Effects: Equivalent to make_pair(lower_bound(x),upper_bound(x)).
Complexity: O(log(n)).
template<typename CompatibleKey,typename CompatibleCompare>
std::pair<iterator,iterator> equal_range(
  const CompatibleKey& x,const CompatibleCompare& comp)const;
Requires: (CompatibleKey, CompatibleCompare) is a compatible extension of key_compare.
Effects: Equivalent to make_pair(lower_bound(x,comp),upper_bound(x,comp)).
Complexity: O(log(n)).

Range operations

The member function range is not defined for sorted associative containers, but ordered indices provide it as a convenient utility. A range or interval is defined by two conditions for the lower and upper bounds, which are modeled after the following concepts.

Consider a binary predicate Compare inducing a strict weak order over values of type Key. A type LowerBounder is said to be a lower bounder of Compare if

  1. LowerBounder is a predicate over Key,
  2. if lower(k1) and !comp(k2,k1) then lower(k2),
for every lower of type LowerBounder, comp of type Compare, and k1, k2 of type Key. Similarly, an upper bounder is a type UpperBounder such that
  1. UpperBounder is a predcate over Key,
  2. if upper(k1) and !comp(k1,k2) then upper(k2),
for every upper of type UpperBounder, comp of type Compare, and k1, k2 of type Key.

template<typename LowerBounder,typename UpperBounder>
std::pair<iterator,iterator> range(
  LowerBounder lower,UpperBounder upper)const;
Requires: LowerBounder and UpperBounder are a lower and upper bounder of key_compare, respectively.
Effects: Returns a pair of iterators pointing to the beginning and one past the end of the subsequence of elements satisfying lower and upper simultaneously. If no such elements exist, the iterators both point to the first element satisfying lower, or else are equal to end() if this latter element does not exist.
Complexity: O(log(n)).
Variants: In place of lower or upper (or both), the singular value boost::multi_index::unbounded can be provided. This acts as a predicate which all values of type key_type satisfy.

Serialization

Indices cannot be serialized on their own, but only as part of the multi_index_container into which they are embedded. In describing the additional preconditions and guarantees associated to ordered indices with respect to serialization of their embedding containers, we use the concepts defined in the multi_index_container serialization section.

Operation: saving of a multi_index_container m to an output archive (XML archive) ar.
Requires: No additional requirements to those imposed by the container.
Operation: loading of a multi_index_container m' from an input archive (XML archive) ar.
Requires: Additionally to the general requirements, value_comp() must be serialization-compatible with m.get<i>().value_comp(), where i is the position of the ordered index in the container.
Postconditions: On successful loading, each of the elements of [begin(), end()) is a restored copy of the corresponding element in [m.get<i>().begin(), m.get<i>().end()).
Operation: saving of an iterator or const_iterator it to an output archive (XML archive) ar.
Requires: it is a valid iterator of the index. The associated multi_index_container has been previously saved.
Operation: loading of an iterator or const_iterator it' from an input archive (XML archive) ar.
Postconditions: On successful loading, if it was dereferenceable then *it' is the restored copy of *it, otherwise it'==end().
Note: It is allowed that it be a const_iterator and the restored it' an iterator, or viceversa.



Revised May 9th 2020

© Copyright 2003-2020 Joaquín M López Muñoz. Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)