// test_bernoulli.cpp // Copyright John Maddock 2006. // Copyright Paul A. Bristow 2007, 2012. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) // Basic sanity test for Bernoulli Cumulative Distribution Function. #ifdef _MSC_VER # pragma warning (disable : 4535) // calling _set_se_translator() requires /EHa. # pragma warning (disable : 4244) // conversion possible loss of data. # pragma warning (disable : 4996) // 'putenv': The POSIX name for this item is deprecated. # pragma warning (disable : 4127) // conditional expression is constant. #endif // Default domain error policy is // #define BOOST_MATH_DOMAIN_ERROR_POLICY throw_on_error #include // for real_concept using ::boost::math::concepts::real_concept; #include #include // for bernoulli_distribution using boost::math::bernoulli_distribution; #define BOOST_TEST_MAIN #include // for test_main #include // for BOOST_CHECK_CLOSE_FRACTION, BOOST_CHECK_EQUAL... #include using std::cout; using std::endl; using std::fixed; using std::right; using std::left; using std::showpoint; using std::showpos; using std::setw; using std::setprecision; #include using std::numeric_limits; template // Any floating-point type RealType. void test_spots(RealType) { // Parameter only provides the type, float, double... value ignored. // Basic sanity checks, test data may be to double precision only // so set tolerance to 100 eps expressed as a fraction, // or 100 eps of type double expressed as a fraction, // whichever is the larger. RealType tolerance = (std::max) (boost::math::tools::epsilon(), static_cast(std::numeric_limits::epsilon())); tolerance *= 100; cout << "Tolerance for type " << typeid(RealType).name() << " is " << setprecision(3) << tolerance << " (or " << tolerance * 100 << "%)." << endl; // Sources of spot test values - calculator, // or Steve Moshier's command interpreter V1.3 100 decimal digit calculator, // Wolfram function evaluator. using boost::math::bernoulli_distribution; // of type RealType. using ::boost::math::cdf; using ::boost::math::pdf; BOOST_CHECK_EQUAL(bernoulli_distribution(static_cast(0.5)).success_fraction(), static_cast(0.5)); BOOST_CHECK_EQUAL(bernoulli_distribution(static_cast(0.1L)).success_fraction(), static_cast(0.1L)); BOOST_CHECK_EQUAL(bernoulli_distribution(static_cast(0.9L)).success_fraction(), static_cast(0.9L)); BOOST_MATH_CHECK_THROW( // Constructor success_fraction outside 0 to 1. bernoulli_distribution(static_cast(2)), std::domain_error); BOOST_MATH_CHECK_THROW( bernoulli_distribution(static_cast(-2)), std::domain_error); BOOST_MATH_CHECK_THROW( pdf( // pdf k neither 0 nor 1. bernoulli_distribution(static_cast(0.25L)), static_cast(-1)), std::domain_error); BOOST_MATH_CHECK_THROW( pdf( // pdf k neither 0 nor 1. bernoulli_distribution(static_cast(0.25L)), static_cast(2)), std::domain_error); BOOST_CHECK_EQUAL( pdf( // OK k (or n) bernoulli_distribution(static_cast(0.5L)), static_cast(0)), static_cast(0.5)); // Expect 1 - p. BOOST_CHECK_CLOSE_FRACTION( pdf( // OK k (or n) bernoulli_distribution(static_cast(0.6L)), static_cast(0)), static_cast(0.4L), tolerance); // Expect 1 - p. BOOST_CHECK_CLOSE_FRACTION( pdf( // OK k (or n) bernoulli_distribution(static_cast(0.6L)), static_cast(0)), static_cast(0.4L), tolerance); // Expect 1- p. BOOST_CHECK_CLOSE_FRACTION( pdf( // OK k (or n) bernoulli_distribution(static_cast(0.4L)), static_cast(0)), static_cast(0.6L), tolerance); // Expect 1- p. BOOST_CHECK_EQUAL( mean(bernoulli_distribution(static_cast(0.5L))), static_cast(0.5L)); BOOST_CHECK_EQUAL( mean(bernoulli_distribution(static_cast(0.1L))), static_cast(0.1L)); BOOST_CHECK_CLOSE_FRACTION( variance(bernoulli_distribution(static_cast(0.1L))), static_cast(0.09L), tolerance); BOOST_CHECK_CLOSE_FRACTION( skewness(bernoulli_distribution(static_cast(0.1L))), static_cast(2.666666666666666666666666666666666666666666L), tolerance); BOOST_CHECK_CLOSE_FRACTION( kurtosis(bernoulli_distribution(static_cast(0.1L))), static_cast(8.11111111111111111111111111111111111111111111L), tolerance); BOOST_CHECK_CLOSE_FRACTION( kurtosis_excess(bernoulli_distribution(static_cast(0.1L))), static_cast(5.11111111111111111111111111111111111111111111L), tolerance); BOOST_MATH_CHECK_THROW( quantile( bernoulli_distribution(static_cast(2)), // prob >1 static_cast(0)), std::domain_error ); BOOST_MATH_CHECK_THROW( quantile( bernoulli_distribution(static_cast(-1)), // prob < 0 static_cast(0)), std::domain_error ); BOOST_MATH_CHECK_THROW( quantile( bernoulli_distribution(static_cast(0.5L)), // k >1 static_cast(-1)), std::domain_error ); BOOST_MATH_CHECK_THROW( quantile( bernoulli_distribution(static_cast(0.5L)), // k < 0 static_cast(2)), std::domain_error ); BOOST_CHECK_CLOSE_FRACTION( cdf( bernoulli_distribution(static_cast(0.6L)), static_cast(0)), static_cast(0.4L), // 1 - p tolerance ); BOOST_CHECK_CLOSE_FRACTION( cdf( bernoulli_distribution(static_cast(0.6L)), static_cast(1)), static_cast(1), // p tolerance ); BOOST_CHECK_CLOSE_FRACTION( cdf(complement( bernoulli_distribution(static_cast(0.6L)), static_cast(1))), static_cast(0), tolerance ); BOOST_CHECK_CLOSE_FRACTION( cdf(complement( bernoulli_distribution(static_cast(0.6L)), static_cast(0))), static_cast(0.6L), tolerance ); BOOST_CHECK_EQUAL( quantile( bernoulli_distribution(static_cast(0.6L)), static_cast(0.1L)), // < p static_cast(0) ); BOOST_CHECK_EQUAL( quantile( bernoulli_distribution(static_cast(0.6L)), static_cast(0.9L)), // > p static_cast(1) ); BOOST_CHECK_EQUAL( quantile(complement( bernoulli_distribution(static_cast(0.6L)), static_cast(0.1L))), // < p static_cast(1) ); BOOST_CHECK_EQUAL( quantile(complement( bernoulli_distribution(static_cast(0.6L)), static_cast(0.9L))), // > p static_cast(0) ); // Checks for 'bad' parameters. // Construction. BOOST_MATH_CHECK_THROW(bernoulli_distribution(-1), std::domain_error); // p outside 0 to 1. BOOST_MATH_CHECK_THROW(bernoulli_distribution(+2), std::domain_error); // p outside 0 to 1. // Parameters. bernoulli_distribution dist(RealType(1)); BOOST_MATH_CHECK_THROW(pdf(dist, -1), std::domain_error); BOOST_MATH_CHECK_THROW(cdf(dist, -1), std::domain_error); BOOST_MATH_CHECK_THROW(cdf(complement(dist, -1)), std::domain_error); BOOST_MATH_CHECK_THROW(quantile(dist, 2), std::domain_error); BOOST_MATH_CHECK_THROW(quantile(complement(dist, -1)), std::domain_error); BOOST_MATH_CHECK_THROW(quantile(dist, -1), std::domain_error); BOOST_MATH_CHECK_THROW(quantile(complement(dist, -1)), std::domain_error); // No longer allow any parameter to be NaN or inf, so all these tests should throw. if (std::numeric_limits::has_quiet_NaN) { // Attempt to construct from non-finite should throw. RealType nan = std::numeric_limits::quiet_NaN(); #ifndef BOOST_NO_EXCEPTIONS BOOST_MATH_CHECK_THROW(bernoulli_distribution b(nan), std::domain_error); #else BOOST_MATH_CHECK_THROW(bernoulli_distribution(nan), std::domain_error); #endif // Non-finite parameters should throw. bernoulli_distribution b(RealType(1)); BOOST_MATH_CHECK_THROW(pdf(b, +nan), std::domain_error); // x = NaN BOOST_MATH_CHECK_THROW(cdf(b, +nan), std::domain_error); // x = NaN BOOST_MATH_CHECK_THROW(cdf(complement(b, +nan)), std::domain_error); // x = + nan BOOST_MATH_CHECK_THROW(quantile(b, +nan), std::domain_error); // p = + nan BOOST_MATH_CHECK_THROW(quantile(complement(b, +nan)), std::domain_error); // p = + nan } // has_quiet_NaN if (std::numeric_limits::has_infinity) { RealType inf = std::numeric_limits::infinity(); #ifndef BOOST_NO_EXCEPTIONS BOOST_MATH_CHECK_THROW(bernoulli_distribution w(inf), std::domain_error); #else BOOST_MATH_CHECK_THROW(bernoulli_distribution(inf), std::domain_error); #endif bernoulli_distribution w(RealType(1)); #ifndef BOOST_NO_EXCEPTIONS BOOST_MATH_CHECK_THROW(bernoulli_distribution w(inf), std::domain_error); #else BOOST_MATH_CHECK_THROW(bernoulli_distribution(inf), std::domain_error); #endif BOOST_MATH_CHECK_THROW(pdf(w, +inf), std::domain_error); // x = inf BOOST_MATH_CHECK_THROW(cdf(w, +inf), std::domain_error); // x = inf BOOST_MATH_CHECK_THROW(cdf(complement(w, +inf)), std::domain_error); // x = + inf BOOST_MATH_CHECK_THROW(quantile(w, +inf), std::domain_error); // p = + inf BOOST_MATH_CHECK_THROW(quantile(complement(w, +inf)), std::domain_error); // p = + inf } // has_infinity } // template void test_spots(RealType) BOOST_AUTO_TEST_CASE( test_main ) { BOOST_MATH_CONTROL_FP; // Check that can generate bernoulli distribution using both convenience methods: bernoulli_distribution bn1(0.5); // Using default RealType double. boost::math::bernoulli bn2(0.5); // Using typedef. BOOST_CHECK_EQUAL(bn1.success_fraction(), 0.5); BOOST_CHECK_EQUAL(bn2.success_fraction(), 0.5); BOOST_CHECK_EQUAL(kurtosis(bn2) -3, kurtosis_excess(bn2)); BOOST_CHECK_EQUAL(kurtosis_excess(bn2), -2); //using namespace boost::math; or using boost::math::bernoulli; double tol5eps = std::numeric_limits::epsilon() * 5; // 5 eps as a fraction. // Default bernoulli is type double, so these test values should also be type double. BOOST_CHECK_CLOSE_FRACTION(kurtosis_excess(bernoulli(0.1)), 5.11111111111111111111111111111111111111111111111111, tol5eps); BOOST_CHECK_CLOSE_FRACTION(kurtosis_excess(bernoulli(0.9)), 5.11111111111111111111111111111111111111111111111111, tol5eps); BOOST_CHECK_CLOSE_FRACTION(kurtosis(bernoulli(0.6)), 1./0.4 + 1./0.6 -3., tol5eps); BOOST_CHECK_EQUAL(kurtosis(bernoulli(0)), +std::numeric_limits::infinity()); BOOST_CHECK_EQUAL(kurtosis(bernoulli(1)), +std::numeric_limits::infinity()); // // Basic sanity-check spot values. // (Parameter value, arbitrarily zero, only communicates the floating point type). test_spots(0.0F); // Test float. test_spots(0.0); // Test double. test_spots(0.0L); // Test long double. #if !BOOST_WORKAROUND(BOOST_BORLANDC, BOOST_TESTED_AT(0x582)) test_spots(boost::math::concepts::real_concept(0.)); // Test real concept. #endif } // BOOST_AUTO_TEST_CASE( test_main ) /* Output is: Description: Autorun "J:\Cpp\MathToolkit\test\Math_test\Debug\test_bernouilli.exe" Running 1 test case... Tolerance for type float is 1.19e-005 (or 0.00119%). Tolerance for type double is 2.22e-014 (or 2.22e-012%). Tolerance for type long double is 2.22e-014 (or 2.22e-012%). Tolerance for type class boost::math::concepts::real_concept is 2.22e-014 (or 2.22e-012%). *** No errors detected */