/* * Copyright Nick Thompson, 2017 * Use, modification and distribution are subject to the * Boost Software License, Version 1.0. (See accompanying file * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) */ #define BOOST_TEST_MODULE catmull_rom_test #include #include #include #include #include #include #include #include #include #include #include using std::abs; using boost::multiprecision::cpp_bin_float_50; using boost::math::catmull_rom; template void test_alpha_distance() { Real tol = std::numeric_limits::epsilon(); std::array v1 = {0,0,0}; std::array v2 = {1,0,0}; Real alpha = 0.5; Real d = boost::math::detail::alpha_distance>(v1, v2, alpha); BOOST_CHECK_CLOSE_FRACTION(d, 1, tol); d = boost::math::detail::alpha_distance>(v1, v2, 0.0); BOOST_CHECK_CLOSE_FRACTION(d, 1, tol); d = boost::math::detail::alpha_distance>(v1, v2, 1.0); BOOST_CHECK_CLOSE_FRACTION(d, 1, tol); v2[0] = 2; d = boost::math::detail::alpha_distance>(v1, v2, alpha); BOOST_CHECK_CLOSE_FRACTION(d, pow(2, (Real)1/ (Real) 2), tol); d = boost::math::detail::alpha_distance>(v1, v2, 0.0); BOOST_CHECK_CLOSE_FRACTION(d, 1, tol); d = boost::math::detail::alpha_distance>(v1, v2, 1.0); BOOST_CHECK_CLOSE_FRACTION(d, 2, tol); } template void test_linear() { std::cout << "Testing that the Catmull-Rom spline interpolates linear functions correctly on type " << boost::typeindex::type_id().pretty_name() << "\n"; Real tol = 10*std::numeric_limits::epsilon(); std::vector> v(4); v[0] = {0,0,0}; v[1] = {1,0,0}; v[2] = {2,0,0}; v[3] = {3,0,0}; catmull_rom> cr(std::move(v)); // Test that the interpolation condition is obeyed: BOOST_CHECK_CLOSE_FRACTION(cr.max_parameter(), 3, tol); auto p0 = cr(0.0); BOOST_CHECK_SMALL(p0[0], tol); BOOST_CHECK_SMALL(p0[1], tol); BOOST_CHECK_SMALL(p0[2], tol); auto p1 = cr(1.0); BOOST_CHECK_CLOSE_FRACTION(p1[0], 1, tol); BOOST_CHECK_SMALL(p1[1], tol); BOOST_CHECK_SMALL(p1[2], tol); auto p2 = cr(2.0); BOOST_CHECK_CLOSE_FRACTION(p2[0], 2, tol); BOOST_CHECK_SMALL(p2[1], tol); BOOST_CHECK_SMALL(p2[2], tol); auto p3 = cr(3.0); BOOST_CHECK_CLOSE_FRACTION(p3[0], 3, tol); BOOST_CHECK_SMALL(p3[1], tol); BOOST_CHECK_SMALL(p3[2], tol); Real s = cr.parameter_at_point(0); BOOST_CHECK_SMALL(s, tol); s = cr.parameter_at_point(1); BOOST_CHECK_CLOSE_FRACTION(s, 1, tol); s = cr.parameter_at_point(2); BOOST_CHECK_CLOSE_FRACTION(s, 2, tol); s = cr.parameter_at_point(3); BOOST_CHECK_CLOSE_FRACTION(s, 3, tol); // Test that the function is linear on the interval [1,2]: for (double s = 1; s < 2; s += 0.01) { auto p = cr(s); BOOST_CHECK_CLOSE_FRACTION(p[0], s, tol); BOOST_CHECK_SMALL(p[1], tol); BOOST_CHECK_SMALL(p[2], tol); auto tangent = cr.prime(s); BOOST_CHECK_CLOSE_FRACTION(tangent[0], 1, tol); BOOST_CHECK_SMALL(tangent[1], tol); BOOST_CHECK_SMALL(tangent[2], tol); } } template void test_circle() { using boost::math::constants::pi; using std::cos; using std::sin; std::cout << "Testing that the Catmull-Rom spline interpolates circles correctly on type " << boost::typeindex::type_id().pretty_name() << "\n"; Real tol = 10*std::numeric_limits::epsilon(); std::vector> v(20*sizeof(Real)); std::vector> u(20*sizeof(Real)); for (size_t i = 0; i < v.size(); ++i) { Real theta = ((Real) i/ (Real) v.size())*2*pi(); v[i] = {cos(theta), sin(theta)}; u[i] = v[i]; } catmull_rom> circle(std::move(v), true); // Interpolation condition: for (size_t i = 0; i < v.size(); ++i) { Real s = circle.parameter_at_point(i); auto p = circle(s); Real x = p[0]; Real y = p[1]; if (abs(x) < std::numeric_limits::epsilon()) { BOOST_CHECK_SMALL(u[i][0], tol); } if (abs(y) < std::numeric_limits::epsilon()) { BOOST_CHECK_SMALL(u[i][1], tol); } else { BOOST_CHECK_CLOSE_FRACTION(x, u[i][0], tol); BOOST_CHECK_CLOSE_FRACTION(y, u[i][1], tol); } } Real max_s = circle.max_parameter(); for(Real s = 0; s < max_s; s += 0.01) { auto p = circle(s); Real x = p[0]; Real y = p[1]; BOOST_CHECK_CLOSE_FRACTION(x*x+y*y, 1, 0.001); } } template void test_affine_invariance() { std::cout << "Testing that the Catmull-Rom spline is affine invariant in dimension " << dimension << " on type " << boost::typeindex::type_id().pretty_name() << "\n"; Real tol = 1000*std::numeric_limits::epsilon(); std::vector> v(100); std::vector> u(100); std::mt19937_64 gen(438232); Real inv_denom = (Real) 100/( (Real) (gen.max)() + (Real) 2); for(size_t j = 0; j < dimension; ++j) { v[0][j] = gen()*inv_denom; u[0][j] = v[0][j]; } for (size_t i = 1; i < v.size(); ++i) { for(size_t j = 0; j < dimension; ++j) { v[i][j] = v[i-1][j] + gen()*inv_denom; u[i][j] = v[i][j]; } } std::array affine_shift; for (size_t j = 0; j < dimension; ++j) { affine_shift[j] = gen()*inv_denom; } catmull_rom> cr1(std::move(v)); for(size_t i = 0; i< u.size(); ++i) { for(size_t j = 0; j < dimension; ++j) { u[i][j] += affine_shift[j]; } } catmull_rom> cr2(std::move(u)); BOOST_CHECK_CLOSE_FRACTION(cr1.max_parameter(), cr2.max_parameter(), tol); Real ds = cr1.max_parameter()/1024; for (Real s = 0; s < cr1.max_parameter(); s += ds) { auto p0 = cr1(s); auto p1 = cr2(s); auto tangent0 = cr1.prime(s); auto tangent1 = cr2.prime(s); for (size_t j = 0; j < dimension; ++j) { BOOST_CHECK_CLOSE_FRACTION(p0[j] + affine_shift[j], p1[j], tol); if (abs(tangent0[j]) > 5000*tol) { BOOST_CHECK_CLOSE_FRACTION(tangent0[j], tangent1[j], 5000*tol); } } } } template void test_helix() { using boost::math::constants::pi; std::cout << "Testing that the Catmull-Rom spline interpolates helices correctly on type " << boost::typeindex::type_id().pretty_name() << "\n"; Real tol = 0.001; std::vector> v(400*sizeof(Real)); for (size_t i = 0; i < v.size(); ++i) { Real theta = ((Real) i/ (Real) v.size())*2*pi(); v[i] = {cos(theta), sin(theta), theta}; } catmull_rom> helix(std::move(v)); // Interpolation condition: for (size_t i = 0; i < v.size(); ++i) { Real s = helix.parameter_at_point(i); auto p = helix(s); Real t = p[2]; Real x = p[0]; Real y = p[1]; if (abs(x) < tol) { BOOST_CHECK_SMALL(cos(t), tol); } if (abs(y) < tol) { BOOST_CHECK_SMALL(sin(t), tol); } else { BOOST_CHECK_CLOSE_FRACTION(x, cos(t), tol); BOOST_CHECK_CLOSE_FRACTION(y, sin(t), tol); } } Real max_s = helix.max_parameter(); for(Real s = helix.parameter_at_point(1); s < max_s; s += 0.01) { auto p = helix(s); Real x = p[0]; Real y = p[1]; Real t = p[2]; BOOST_CHECK_CLOSE_FRACTION(x*x+y*y, (Real) 1, (Real) 0.01); if (abs(x) < 0.01) { BOOST_CHECK_SMALL(cos(t), (Real) 0.05); } if (abs(y) < 0.01) { BOOST_CHECK_SMALL(sin(t), (Real) 0.05); } else { BOOST_CHECK_CLOSE_FRACTION(x, cos(t), (Real) 0.05); BOOST_CHECK_CLOSE_FRACTION(y, sin(t), (Real) 0.05); } } } template class mypoint3d { public: // Must define a value_type: typedef Real value_type; // Regular constructor: mypoint3d(Real x, Real y, Real z) { m_vec[0] = x; m_vec[1] = y; m_vec[2] = z; } // Must define a default constructor: mypoint3d() {} // Must define array access: Real operator[](size_t i) const { return m_vec[i]; } // Array element assignment: Real& operator[](size_t i) { return m_vec[i]; } private: std::array m_vec; }; // Must define the free function "size()": template BOOST_CONSTEXPR std::size_t size(const mypoint3d& c) { return 3; } template void test_data_representations() { std::cout << "Testing that the Catmull-Rom spline works with multiple data representations.\n"; mypoint3d p0(0.1, 0.2, 0.3); mypoint3d p1(0.2, 0.3, 0.4); mypoint3d p2(0.3, 0.4, 0.5); mypoint3d p3(0.4, 0.5, 0.6); mypoint3d p4(0.5, 0.6, 0.7); mypoint3d p5(0.6, 0.7, 0.8); // Tests initializer_list: catmull_rom> cat({p0, p1, p2, p3, p4, p5}); Real tol = 0.001; auto p = cat(cat.parameter_at_point(0)); BOOST_CHECK_CLOSE_FRACTION(p[0], p0[0], tol); BOOST_CHECK_CLOSE_FRACTION(p[1], p0[1], tol); BOOST_CHECK_CLOSE_FRACTION(p[2], p0[2], tol); p = cat(cat.parameter_at_point(1)); BOOST_CHECK_CLOSE_FRACTION(p[0], p1[0], tol); BOOST_CHECK_CLOSE_FRACTION(p[1], p1[1], tol); BOOST_CHECK_CLOSE_FRACTION(p[2], p1[2], tol); } template void test_random_access_container() { std::cout << "Testing that the Catmull-Rom spline works with multiple data representations.\n"; mypoint3d p0(0.1, 0.2, 0.3); mypoint3d p1(0.2, 0.3, 0.4); mypoint3d p2(0.3, 0.4, 0.5); mypoint3d p3(0.4, 0.5, 0.6); mypoint3d p4(0.5, 0.6, 0.7); mypoint3d p5(0.6, 0.7, 0.8); boost::numeric::ublas::vector> u(6); u[0] = p0; u[1] = p1; u[2] = p2; u[3] = p3; u[4] = p4; u[5] = p5; // Tests initializer_list: catmull_rom, decltype(u)> cat(std::move(u)); Real tol = 0.001; auto p = cat(cat.parameter_at_point(0)); BOOST_CHECK_CLOSE_FRACTION(p[0], p0[0], tol); BOOST_CHECK_CLOSE_FRACTION(p[1], p0[1], tol); BOOST_CHECK_CLOSE_FRACTION(p[2], p0[2], tol); p = cat(cat.parameter_at_point(1)); BOOST_CHECK_CLOSE_FRACTION(p[0], p1[0], tol); BOOST_CHECK_CLOSE_FRACTION(p[1], p1[1], tol); BOOST_CHECK_CLOSE_FRACTION(p[2], p1[2], tol); } BOOST_AUTO_TEST_CASE(catmull_rom_test) { #if !defined(TEST) || (TEST == 1) test_data_representations(); test_alpha_distance(); test_linear(); #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_linear(); #endif test_circle(); test_circle(); #endif #if !defined(TEST) || (TEST == 2) test_helix(); test_affine_invariance(); test_affine_invariance(); test_affine_invariance(); test_affine_invariance(); test_random_access_container(); #endif #if !defined(TEST) || (TEST == 3) test_affine_invariance(); #endif }