// Copyright Michael Drexl 2005, 2006. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://boost.org/LICENSE_1_0.txt) // Example use of the resource-constrained shortest paths algorithm. #include #ifdef BOOST_MSVC #pragma warning(disable : 4267) #endif #include #include #include using namespace boost; struct SPPRC_Example_Graph_Vert_Prop { SPPRC_Example_Graph_Vert_Prop(int n = 0, int e = 0, int l = 0) : num(n), eat(e), lat(l) { } int num; // earliest arrival time int eat; // latest arrival time int lat; }; struct SPPRC_Example_Graph_Arc_Prop { SPPRC_Example_Graph_Arc_Prop(int n = 0, int c = 0, int t = 0) : num(n), cost(c), time(t) { } int num; // traversal cost int cost; // traversal time int time; }; typedef adjacency_list< vecS, vecS, directedS, SPPRC_Example_Graph_Vert_Prop, SPPRC_Example_Graph_Arc_Prop > SPPRC_Example_Graph; // data structures for spp without resource constraints: // ResourceContainer model struct spp_no_rc_res_cont { spp_no_rc_res_cont(int c = 0) : cost(c) {}; spp_no_rc_res_cont& operator=(const spp_no_rc_res_cont& other) { if (this == &other) return *this; this->~spp_no_rc_res_cont(); new (this) spp_no_rc_res_cont(other); return *this; } int cost; }; bool operator==( const spp_no_rc_res_cont& res_cont_1, const spp_no_rc_res_cont& res_cont_2) { return (res_cont_1.cost == res_cont_2.cost); } bool operator<( const spp_no_rc_res_cont& res_cont_1, const spp_no_rc_res_cont& res_cont_2) { return (res_cont_1.cost < res_cont_2.cost); } // ResourceExtensionFunction model class ref_no_res_cont { public: inline bool operator()(const SPPRC_Example_Graph& g, spp_no_rc_res_cont& new_cont, const spp_no_rc_res_cont& old_cont, graph_traits< SPPRC_Example_Graph >::edge_descriptor ed) const { new_cont.cost = old_cont.cost + g[ed].cost; return true; } }; // DominanceFunction model class dominance_no_res_cont { public: inline bool operator()(const spp_no_rc_res_cont& res_cont_1, const spp_no_rc_res_cont& res_cont_2) const { // must be "<=" here!!! // must NOT be "<"!!! return res_cont_1.cost <= res_cont_2.cost; // this is not a contradiction to the documentation // the documentation says: // "A label $l_1$ dominates a label $l_2$ if and only if both are // resident at the same vertex, and if, for each resource, the resource // consumption of $l_1$ is less than or equal to the resource // consumption of $l_2$, and if there is at least one resource where // $l_1$ has a lower resource consumption than $l_2$." one can think of // a new label with a resource consumption equal to that of an old label // as being dominated by that old label, because the new one will have a // higher number and is created at a later point in time, so one can // implicitly use the number or the creation time as a resource for // tie-breaking } }; // end data structures for spp without resource constraints: // data structures for shortest path problem with time windows (spptw) // ResourceContainer model struct spp_spptw_res_cont { spp_spptw_res_cont(int c = 0, int t = 0) : cost(c), time(t) {} spp_spptw_res_cont& operator=(const spp_spptw_res_cont& other) { if (this == &other) return *this; this->~spp_spptw_res_cont(); new (this) spp_spptw_res_cont(other); return *this; } int cost; int time; }; bool operator==( const spp_spptw_res_cont& res_cont_1, const spp_spptw_res_cont& res_cont_2) { return (res_cont_1.cost == res_cont_2.cost && res_cont_1.time == res_cont_2.time); } bool operator<( const spp_spptw_res_cont& res_cont_1, const spp_spptw_res_cont& res_cont_2) { if (res_cont_1.cost > res_cont_2.cost) return false; if (res_cont_1.cost == res_cont_2.cost) return res_cont_1.time < res_cont_2.time; return true; } // ResourceExtensionFunction model class ref_spptw { public: inline bool operator()(const SPPRC_Example_Graph& g, spp_spptw_res_cont& new_cont, const spp_spptw_res_cont& old_cont, graph_traits< SPPRC_Example_Graph >::edge_descriptor ed) const { const SPPRC_Example_Graph_Arc_Prop& arc_prop = get(edge_bundle, g)[ed]; const SPPRC_Example_Graph_Vert_Prop& vert_prop = get(vertex_bundle, g)[target(ed, g)]; new_cont.cost = old_cont.cost + arc_prop.cost; int& i_time = new_cont.time; i_time = old_cont.time + arc_prop.time; i_time < vert_prop.eat ? i_time = vert_prop.eat : 0; return i_time <= vert_prop.lat ? true : false; } }; // DominanceFunction model class dominance_spptw { public: inline bool operator()(const spp_spptw_res_cont& res_cont_1, const spp_spptw_res_cont& res_cont_2) const { // must be "<=" here!!! // must NOT be "<"!!! return res_cont_1.cost <= res_cont_2.cost && res_cont_1.time <= res_cont_2.time; // this is not a contradiction to the documentation // the documentation says: // "A label $l_1$ dominates a label $l_2$ if and only if both are // resident at the same vertex, and if, for each resource, the resource // consumption of $l_1$ is less than or equal to the resource // consumption of $l_2$, and if there is at least one resource where // $l_1$ has a lower resource consumption than $l_2$." one can think of // a new label with a resource consumption equal to that of an old label // as being dominated by that old label, because the new one will have a // higher number and is created at a later point in time, so one can // implicitly use the number or the creation time as a resource for // tie-breaking } }; // end data structures for shortest path problem with time windows (spptw) // example graph structure and cost from // http://www.boost.org/libs/graph/example/dijkstra-example.cpp enum nodes { A, B, C, D, E }; char name[] = "ABCDE"; int main() { SPPRC_Example_Graph g; add_vertex(SPPRC_Example_Graph_Vert_Prop(A, 0, 0), g); add_vertex(SPPRC_Example_Graph_Vert_Prop(B, 5, 20), g); add_vertex(SPPRC_Example_Graph_Vert_Prop(C, 6, 10), g); add_vertex(SPPRC_Example_Graph_Vert_Prop(D, 3, 12), g); add_vertex(SPPRC_Example_Graph_Vert_Prop(E, 0, 100), g); add_edge(A, C, SPPRC_Example_Graph_Arc_Prop(0, 1, 5), g); add_edge(B, B, SPPRC_Example_Graph_Arc_Prop(1, 2, 5), g); add_edge(B, D, SPPRC_Example_Graph_Arc_Prop(2, 1, 2), g); add_edge(B, E, SPPRC_Example_Graph_Arc_Prop(3, 2, 7), g); add_edge(C, B, SPPRC_Example_Graph_Arc_Prop(4, 7, 3), g); add_edge(C, D, SPPRC_Example_Graph_Arc_Prop(5, 3, 8), g); add_edge(D, E, SPPRC_Example_Graph_Arc_Prop(6, 1, 3), g); add_edge(E, A, SPPRC_Example_Graph_Arc_Prop(7, 1, 5), g); add_edge(E, B, SPPRC_Example_Graph_Arc_Prop(8, 1, 4), g); // the unique shortest path from A to E in the dijkstra-example.cpp is // A -> C -> D -> E // its length is 5 // the following code also yields this result // with the above time windows, this path is infeasible // now, there are two shortest paths that are also feasible with respect to // the vertex time windows: // A -> C -> B -> D -> E and // A -> C -> B -> E // however, the latter has a longer total travel time and is therefore not // pareto-optimal, i.e., it is dominated by the former path // therefore, the code below returns only the former path // spp without resource constraints graph_traits< SPPRC_Example_Graph >::vertex_descriptor s = A; graph_traits< SPPRC_Example_Graph >::vertex_descriptor t = E; std::vector< std::vector< graph_traits< SPPRC_Example_Graph >::edge_descriptor > > opt_solutions; std::vector< spp_no_rc_res_cont > pareto_opt_rcs_no_rc; r_c_shortest_paths(g, get(&SPPRC_Example_Graph_Vert_Prop::num, g), get(&SPPRC_Example_Graph_Arc_Prop::num, g), s, t, opt_solutions, pareto_opt_rcs_no_rc, spp_no_rc_res_cont(0), ref_no_res_cont(), dominance_no_res_cont(), std::allocator< r_c_shortest_paths_label< SPPRC_Example_Graph, spp_no_rc_res_cont > >(), default_r_c_shortest_paths_visitor()); std::cout << "SPP without resource constraints:" << std::endl; std::cout << "Number of optimal solutions: "; std::cout << static_cast< int >(opt_solutions.size()) << std::endl; for (int i = 0; i < static_cast< int >(opt_solutions.size()); ++i) { std::cout << "The " << i << "th shortest path from A to E is: "; std::cout << std::endl; for (int j = static_cast< int >(opt_solutions[i].size()) - 1; j >= 0; --j) std::cout << name[source(opt_solutions[i][j], g)] << std::endl; std::cout << "E" << std::endl; std::cout << "Length: " << pareto_opt_rcs_no_rc[i].cost << std::endl; } std::cout << std::endl; // spptw std::vector< std::vector< graph_traits< SPPRC_Example_Graph >::edge_descriptor > > opt_solutions_spptw; std::vector< spp_spptw_res_cont > pareto_opt_rcs_spptw; r_c_shortest_paths(g, get(&SPPRC_Example_Graph_Vert_Prop::num, g), get(&SPPRC_Example_Graph_Arc_Prop::num, g), s, t, opt_solutions_spptw, pareto_opt_rcs_spptw, spp_spptw_res_cont(0, 0), ref_spptw(), dominance_spptw(), std::allocator< r_c_shortest_paths_label< SPPRC_Example_Graph, spp_spptw_res_cont > >(), default_r_c_shortest_paths_visitor()); std::cout << "SPP with time windows:" << std::endl; std::cout << "Number of optimal solutions: "; std::cout << static_cast< int >(opt_solutions.size()) << std::endl; for (int i = 0; i < static_cast< int >(opt_solutions.size()); ++i) { std::cout << "The " << i << "th shortest path from A to E is: "; std::cout << std::endl; for (int j = static_cast< int >(opt_solutions_spptw[i].size()) - 1; j >= 0; --j) std::cout << name[source(opt_solutions_spptw[i][j], g)] << std::endl; std::cout << "E" << std::endl; std::cout << "Length: " << pareto_opt_rcs_spptw[i].cost << std::endl; std::cout << "Time: " << pareto_opt_rcs_spptw[i].time << std::endl; } // utility function check_r_c_path example std::cout << std::endl; bool b_is_a_path_at_all = false; bool b_feasible = false; bool b_correctly_extended = false; spp_spptw_res_cont actual_final_resource_levels(0, 0); graph_traits< SPPRC_Example_Graph >::edge_descriptor ed_last_extended_arc; check_r_c_path(g, opt_solutions_spptw[0], spp_spptw_res_cont(0, 0), true, pareto_opt_rcs_spptw[0], actual_final_resource_levels, ref_spptw(), b_is_a_path_at_all, b_feasible, b_correctly_extended, ed_last_extended_arc); if (!b_is_a_path_at_all) std::cout << "Not a path." << std::endl; if (!b_feasible) std::cout << "Not a feasible path." << std::endl; if (!b_correctly_extended) std::cout << "Not correctly extended." << std::endl; if (b_is_a_path_at_all && b_feasible && b_correctly_extended) { std::cout << "Actual final resource levels:" << std::endl; std::cout << "Length: " << actual_final_resource_levels.cost << std::endl; std::cout << "Time: " << actual_final_resource_levels.time << std::endl; std::cout << "OK." << std::endl; } return 0; }