// test_inverse_chi_squared.cpp // Copyright Paul A. Bristow 2010. // Copyright John Maddock 2010. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) #ifdef _MSC_VER # pragma warning (disable : 4310) // cast truncates constant value. #endif // http://www.wolframalpha.com/input/?i=inverse+chisquare+distribution #include #include // for real_concept using ::boost::math::concepts::real_concept; //#include #define BOOST_TEST_MAIN #include // for test_main #include // for BOOST_CHECK_CLOSE_FRACTION #include "test_out_of_range.hpp" #include // for inverse_chisquared_distribution using boost::math::inverse_chi_squared_distribution; using boost::math::cdf; using boost::math::pdf; // Use Inverse Gamma distribution to check their relationship: // inverse_chi_squared<>(v) == inverse_gamma<>(v / 2., 0.5) #include // for inverse_gamma_distribution using boost::math::inverse_gamma_distribution; using boost::math::inverse_gamma; // using ::boost::math::cdf; // using ::boost::math::pdf; #include using boost::math::tgamma; // for naive pdf. #include using std::cout; using std::endl; #include using std::numeric_limits; // for epsilon. template RealType naive_pdf(RealType df, RealType scale, RealType x) { // Formula from Wikipedia using namespace std; // For ADL of std functions. using boost::math::tgamma; RealType result = pow(scale * df/2, df/2) * exp(-df * scale/(2 * x)); result /= tgamma(df/2) * pow(x, 1 + df/2); return result; } // Test using a spot value from some other reference source, // in this case test values from output from R provided by Thomas Mang, // and Wolfram Mathematica by Mark Coleman. template void test_spot( RealType degrees_of_freedom, // degrees_of_freedom, RealType scale, // scale, RealType x, // random variate x, RealType pd, // expected pdf, RealType P, // expected CDF, RealType Q, // expected complement of CDF, RealType tol) // test tolerance. { boost::math::inverse_chi_squared_distribution dist(degrees_of_freedom, scale); BOOST_CHECK_CLOSE_FRACTION ( // Compare to expected PDF. pdf(dist, x), // calculated. pd, // expected tol); BOOST_CHECK_CLOSE_FRACTION( // Compare to naive pdf formula (probably less accurate). pdf(dist, x), naive_pdf(dist.degrees_of_freedom(), dist.scale(), x), tol); BOOST_CHECK_CLOSE_FRACTION( // Compare to expected CDF. cdf(dist, x), P, tol); if((P < 0.999) && (Q < 0.999)) { // We can only check this if P is not too close to 1, // so that we can guarantee Q is accurate: BOOST_CHECK_CLOSE_FRACTION( cdf(complement(dist, x)), Q, tol); // 1 - cdf BOOST_CHECK_CLOSE_FRACTION( quantile(dist, P), x, tol); // quantile(cdf) = x BOOST_CHECK_CLOSE_FRACTION( quantile(complement(dist, Q)), x, tol); // quantile(complement(1 - cdf)) = x } } // test_spot template // Any floating-point type RealType. void test_spots(RealType) { // Basic sanity checks, some test data is to six decimal places only, // so set tolerance to 0.000001 (expressed as a percentage = 0.0001%). RealType tolerance = 0.000001f; cout << "Tolerance = " << tolerance * 100 << "%." << endl; // This test values from output from geoR (17 decimal digits) guided by Thomas Mang. test_spot(static_cast(2), static_cast(1./2.), // degrees_of_freedom, default scale = 1/df. static_cast(1.L), // x. static_cast(0.30326532985631671L), // pdf. static_cast(0.60653065971263365L), // cdf. static_cast(1 - 0.606530659712633657L), // cdf complement. tolerance // tol ); // Tests from Mark Coleman & Georgi Boshnakov using Wolfram Mathematica. test_spot(static_cast(10), static_cast(0.1L), // degrees_of_freedom, scale static_cast(0.2), // x static_cast(1.6700235722635659824529759616528281217001163943570L), // pdf static_cast(0.89117801891415124234834646836872197623907651175353L), // cdf static_cast(1 - 0.89117801891415127L), // cdf complement tolerance // tol ); test_spot(static_cast(10), static_cast(0.1L), // degrees_of_freedom, scale static_cast(0.5), // x static_cast(0.03065662009762021L), // pdf static_cast(0.99634015317265628765454354418728984933240514654437L), // cdf static_cast(1 - 0.99634015317265628765454354418728984933240514654437L), // cdf complement tolerance // tol ); test_spot(static_cast(10), static_cast(2), // degrees_of_freedom, scale static_cast(0.5), // x static_cast(0.00054964096598361569L), // pdf static_cast(0.000016944743930067383903707995865261004246785511612700L), // cdf static_cast(1 - 0.000016944743930067383903707995865261004246785511612700L), // cdf complement tolerance // tol ); // Check some bad parameters to the distribution cause expected exception to be thrown. #ifndef BOOST_NO_EXCEPTIONS BOOST_MATH_CHECK_THROW(boost::math::inverse_chi_squared_distribution ichsqbad1(-1), std::domain_error); // negative degrees_of_freedom. BOOST_MATH_CHECK_THROW(boost::math::inverse_chi_squared_distribution ichsqbad2(1, -1), std::domain_error); // negative scale. BOOST_MATH_CHECK_THROW(boost::math::inverse_chi_squared_distribution ichsqbad3(-1, -1), std::domain_error); // negative scale and degrees_of_freedom. #else BOOST_MATH_CHECK_THROW(boost::math::inverse_chi_squared_distribution(-1), std::domain_error); // negative degrees_of_freedom. BOOST_MATH_CHECK_THROW(boost::math::inverse_chi_squared_distribution(1, -1), std::domain_error); // negative scale. BOOST_MATH_CHECK_THROW(boost::math::inverse_chi_squared_distribution(-1, -1), std::domain_error); // negative scale and degrees_of_freedom. #endif check_out_of_range >(1, 1); inverse_chi_squared_distribution ichsq; if(std::numeric_limits::has_infinity) { BOOST_MATH_CHECK_THROW(pdf(ichsq, +std::numeric_limits::infinity()), std::domain_error); // x = + infinity, pdf = 0 BOOST_MATH_CHECK_THROW(pdf(ichsq, -std::numeric_limits::infinity()), std::domain_error); // x = - infinity, pdf = 0 BOOST_MATH_CHECK_THROW(cdf(ichsq, +std::numeric_limits::infinity()),std::domain_error ); // x = + infinity, cdf = 1 BOOST_MATH_CHECK_THROW(cdf(ichsq, -std::numeric_limits::infinity()), std::domain_error); // x = - infinity, cdf = 0 BOOST_MATH_CHECK_THROW(cdf(complement(ichsq, +std::numeric_limits::infinity())), std::domain_error); // x = + infinity, c cdf = 0 BOOST_MATH_CHECK_THROW(cdf(complement(ichsq, -std::numeric_limits::infinity())), std::domain_error); // x = - infinity, c cdf = 1 #ifndef BOOST_NO_EXCEPTIONS BOOST_MATH_CHECK_THROW(boost::math::inverse_chi_squared_distribution nbad1(std::numeric_limits::infinity(), static_cast(1)), std::domain_error); // +infinite mean BOOST_MATH_CHECK_THROW(boost::math::inverse_chi_squared_distribution nbad1(-std::numeric_limits::infinity(), static_cast(1)), std::domain_error); // -infinite mean BOOST_MATH_CHECK_THROW(boost::math::inverse_chi_squared_distribution nbad1(static_cast(0), std::numeric_limits::infinity()), std::domain_error); // infinite sd #else BOOST_MATH_CHECK_THROW(boost::math::inverse_chi_squared_distribution(std::numeric_limits::infinity(), static_cast(1)), std::domain_error); // +infinite mean BOOST_MATH_CHECK_THROW(boost::math::inverse_chi_squared_distribution(-std::numeric_limits::infinity(), static_cast(1)), std::domain_error); // -infinite mean BOOST_MATH_CHECK_THROW(boost::math::inverse_chi_squared_distribution(static_cast(0), std::numeric_limits::infinity()), std::domain_error); // infinite sd #endif } if (std::numeric_limits::has_quiet_NaN) { // If no longer allow x or p to be NaN, then these tests should throw. BOOST_MATH_CHECK_THROW(pdf(ichsq, +std::numeric_limits::quiet_NaN()), std::domain_error); // x = NaN BOOST_MATH_CHECK_THROW(cdf(ichsq, +std::numeric_limits::quiet_NaN()), std::domain_error); // x = NaN BOOST_MATH_CHECK_THROW(cdf(complement(ichsq, +std::numeric_limits::quiet_NaN())), std::domain_error); // x = + infinity BOOST_MATH_CHECK_THROW(quantile(ichsq, std::numeric_limits::quiet_NaN()), std::domain_error); // p = + quiet_NaN BOOST_MATH_CHECK_THROW(quantile(complement(ichsq, std::numeric_limits::quiet_NaN())), std::domain_error); // p = + quiet_NaN } // Spot check for pdf using 'naive pdf' function for(RealType x = 0.5; x < 5; x += 0.5) { BOOST_CHECK_CLOSE_FRACTION( pdf(inverse_chi_squared_distribution(5, 6), x), naive_pdf(RealType(5), RealType(6), x), tolerance); } // Spot checks for parameters: RealType tol_2eps = boost::math::tools::epsilon() * 2; // 2 eps as a fraction. inverse_chi_squared_distribution dist51(5, 1); inverse_chi_squared_distribution dist52(5, 2); inverse_chi_squared_distribution dist31(3, 1); inverse_chi_squared_distribution dist111(11, 1); // 11 mean 0.10000000000000001, variance 0.0011111111111111111, sd 0.033333333333333333 using namespace std; // ADL of std names. using namespace boost::math; inverse_chi_squared_distribution dist10(10); // mean, variance etc BOOST_CHECK_CLOSE_FRACTION(mean(dist10), static_cast(0.125), tol_2eps); BOOST_CHECK_CLOSE_FRACTION(variance(dist10), static_cast(0.0052083333333333333333333333333333333333333333333333L), tol_2eps); BOOST_CHECK_CLOSE_FRACTION(mode(dist10), static_cast(0.08333333333333333333333333333333333333333333333L), tol_2eps); BOOST_CHECK_CLOSE_FRACTION(median(dist10), static_cast(0.10704554778227709530244586234274024205738435512468L), tol_2eps); BOOST_CHECK_CLOSE_FRACTION(cdf(dist10, median(dist10)), static_cast(0.5L), 4 * tol_2eps); BOOST_CHECK_CLOSE_FRACTION(skewness(dist10), static_cast(3.4641016151377545870548926830117447338856105076208L), tol_2eps); BOOST_CHECK_CLOSE_FRACTION(kurtosis(dist10), static_cast(45), tol_2eps); BOOST_CHECK_CLOSE_FRACTION(kurtosis_excess(dist10), static_cast(45-3), tol_2eps); tol_2eps = boost::math::tools::epsilon() * 2; // 2 eps as a percentage. // Special and limit cases: RealType mx = (std::numeric_limits::max)(); RealType mi = (std::numeric_limits::min)(); BOOST_CHECK_EQUAL( pdf(inverse_chi_squared_distribution(1), static_cast(mx)), // max() static_cast(0) ); BOOST_CHECK_EQUAL( pdf(inverse_chi_squared_distribution(1), static_cast(mi)), // min() static_cast(0) ); BOOST_CHECK_EQUAL( pdf(inverse_chi_squared_distribution(1), static_cast(0)), static_cast(0)); BOOST_CHECK_EQUAL( pdf(inverse_chi_squared_distribution(3), static_cast(0)) , static_cast(0.0f)); BOOST_CHECK_EQUAL( cdf(inverse_chi_squared_distribution(1), static_cast(0)) , static_cast(0.0f)); BOOST_CHECK_EQUAL( cdf(inverse_chi_squared_distribution(2), static_cast(0)) , static_cast(0.0f)); BOOST_CHECK_EQUAL( cdf(inverse_chi_squared_distribution(3L), static_cast(0L)) , static_cast(0)); BOOST_CHECK_EQUAL( cdf(complement(inverse_chi_squared_distribution(1), static_cast(0))) , static_cast(1)); BOOST_CHECK_EQUAL( cdf(complement(inverse_chi_squared_distribution(2), static_cast(0))) , static_cast(1)); BOOST_CHECK_EQUAL( cdf(complement(inverse_chi_squared_distribution(3), static_cast(0))) , static_cast(1)); BOOST_MATH_CHECK_THROW( pdf( inverse_chi_squared_distribution(static_cast(-1)), // degrees_of_freedom negative. static_cast(1)), std::domain_error ); BOOST_MATH_CHECK_THROW( pdf( inverse_chi_squared_distribution(static_cast(8)), static_cast(-1)), std::domain_error ); BOOST_MATH_CHECK_THROW( cdf( inverse_chi_squared_distribution(static_cast(-1)), static_cast(1)), std::domain_error ); BOOST_MATH_CHECK_THROW( cdf( inverse_chi_squared_distribution(static_cast(8)), static_cast(-1)), std::domain_error ); BOOST_MATH_CHECK_THROW( cdf(complement( inverse_chi_squared_distribution(static_cast(-1)), static_cast(1))), std::domain_error ); BOOST_MATH_CHECK_THROW( cdf(complement( inverse_chi_squared_distribution(static_cast(8)), static_cast(-1))), std::domain_error ); BOOST_MATH_CHECK_THROW( quantile( inverse_chi_squared_distribution(static_cast(-1)), static_cast(0.5)), std::domain_error ); BOOST_MATH_CHECK_THROW( quantile( inverse_chi_squared_distribution(static_cast(8)), static_cast(-1)), std::domain_error ); BOOST_MATH_CHECK_THROW( quantile( inverse_chi_squared_distribution(static_cast(8)), static_cast(1.1)), std::domain_error ); BOOST_MATH_CHECK_THROW( quantile(complement( inverse_chi_squared_distribution(static_cast(-1)), static_cast(0.5))), std::domain_error ); BOOST_MATH_CHECK_THROW( quantile(complement( inverse_chi_squared_distribution(static_cast(8)), static_cast(-1))), std::domain_error ); BOOST_MATH_CHECK_THROW( quantile(complement( inverse_chi_squared_distribution(static_cast(8)), static_cast(1.1))), std::domain_error ); } // template void test_spots(RealType) BOOST_AUTO_TEST_CASE( test_main ) { BOOST_MATH_CONTROL_FP; double tol_few_eps = numeric_limits::epsilon() * 4; // Check that can generate inverse_chi_squared distribution using the two convenience methods: // inverse_chi_squared_distribution; // with default parameters, degrees_of_freedom = 1, scale - 1 using boost::math::inverse_chi_squared; // Some constructor tests using default double. double tol4eps = boost::math::tools::epsilon() * 4; // 4 eps as a fraction. inverse_chi_squared ichsqdef; // Using typedef and both default parameters. BOOST_CHECK_EQUAL(ichsqdef.degrees_of_freedom(), 1.); // df == 1 BOOST_CHECK_EQUAL(ichsqdef.scale(), 1); // scale == 1./df BOOST_CHECK_CLOSE_FRACTION(pdf(ichsqdef, 1), 0.24197072451914330, tol4eps); BOOST_CHECK_CLOSE_FRACTION(pdf(ichsqdef, 9), 0.013977156581221969, tol4eps); inverse_chi_squared_distribution ichisq102(10., 2); // Both parameters specified. BOOST_CHECK_EQUAL(ichisq102.degrees_of_freedom(), 10.); // Check both parameters stored OK. BOOST_CHECK_EQUAL(ichisq102.scale(), 2.); // Check both parameters stored OK. inverse_chi_squared_distribution ichisq10(10.); // Only df parameter specified (unscaled). BOOST_CHECK_EQUAL(ichisq10.degrees_of_freedom(), 10.); // Check parameter stored. BOOST_CHECK_EQUAL(ichisq10.scale(), 0.1); // Check default scale = 1/df = 1/10 = 0.1 BOOST_CHECK_CLOSE_FRACTION(pdf(ichisq10, 1), 0.00078975346316749169, tol4eps); BOOST_CHECK_CLOSE_FRACTION(pdf(ichisq10, 10), 0.0000000012385799798186384, tol4eps); BOOST_CHECK_CLOSE_FRACTION(mode(ichisq10), 0.0833333333333333333333333333333333333333, tol4eps); // nu * xi / nu + 2 = 10 * 0.1 / (10 + 2) = 1/12 = 0.0833333... // mode is not defined in Mathematica. // See Discussion section http://en.wikipedia.org/wiki/Talk:Scaled-inverse-chi-square_distribution // for origin of this formula. inverse_chi_squared_distribution ichisq5(5.); // // Only df parameter specified. BOOST_CHECK_EQUAL(ichisq5.degrees_of_freedom(), 5.); // check parameter stored. BOOST_CHECK_EQUAL(ichisq5.scale(), 1./5.); // check default is 1/df BOOST_CHECK_CLOSE_FRACTION(pdf(ichisq5, 0.2), 3.0510380337346841, tol4eps); BOOST_CHECK_CLOSE_FRACTION(cdf(ichisq5, 0.5), 0.84914503608460956, tol4eps); BOOST_CHECK_CLOSE_FRACTION(cdf(complement(ichisq5, 0.5)), 1 - 0.84914503608460956, tol4eps); BOOST_CHECK_CLOSE_FRACTION(quantile(ichisq5, 0.84914503608460956), 0.5, tol4eps*100); BOOST_CHECK_CLOSE_FRACTION(quantile(complement(ichisq5, 1. - 0.84914503608460956)), 0.5, tol4eps*100); // Check mean, etc spot values. inverse_chi_squared_distribution ichisq81(8., 1.); // degrees_of_freedom = 5, scale = 1 BOOST_CHECK_CLOSE_FRACTION(mean(ichisq81),1.33333333333333333333333333333333333333333, tol4eps); BOOST_CHECK_CLOSE_FRACTION(variance(ichisq81), 0.888888888888888888888888888888888888888888888, tol4eps); BOOST_CHECK_CLOSE_FRACTION(skewness(ichisq81), 2 * std::sqrt(8.), tol4eps); inverse_chi_squared_distribution ichisq21(2., 1.); BOOST_CHECK_CLOSE_FRACTION(mode(ichisq21), 0.5, tol4eps); BOOST_CHECK_CLOSE_FRACTION(median(ichisq21), 1.4426950408889634, tol4eps); inverse_chi_squared ichsq4(4.); // Using typedef and degrees_of_freedom parameter (and default scale = 1/df). BOOST_CHECK_EQUAL(ichsq4.degrees_of_freedom(), 4.); // df == 4. BOOST_CHECK_EQUAL(ichsq4.scale(), 0.25); // scale == 1 /df == 1/4. inverse_chi_squared ichsq32(3, 2); BOOST_CHECK_EQUAL(ichsq32.degrees_of_freedom(), 3.); // df == 3. BOOST_CHECK_EQUAL(ichsq32.scale(), 2); // scale == 2 inverse_chi_squared ichsq11(1, 1); // Using explicit degrees_of_freedom parameter, and default scale = 1). BOOST_CHECK_CLOSE_FRACTION(mode(ichsq11), 0.3333333333333333333333333333333333333333, tol4eps); // (1 * 1)/ (1 + 2) = 1/3 using Wikipedia nu * xi /(nu + 2) BOOST_CHECK_EQUAL(ichsq11.degrees_of_freedom(), 1.); // df == 1 (default). BOOST_CHECK_EQUAL(ichsq11.scale(), 1.); // scale == 1. /* // Used to find some 'exact' values for testing mean, variance ... // First with scale fixed at unity (Wikipedia definition 1) cout << "df scale mean variance sd median" << endl; for (int degrees_of_freedom = 8; degrees_of_freedom < 30; degrees_of_freedom++) { inverse_chi_squared ichisq(degrees_of_freedom, 1); cout.precision(17); cout << degrees_of_freedom << " " << 1 << " " << mean(ichisq) << ' ' << variance(ichisq) << ' ' << standard_deviation(ichisq) << ' ' << median(ichisq) << endl; } // Default scale = 1 / df cout << "|\n" << "df scale mean variance sd median" << endl; for (int degrees_of_freedom = 8; degrees_of_freedom < 30; degrees_of_freedom++) { inverse_chi_squared ichisq(degrees_of_freedom); cout.precision(17); cout << degrees_of_freedom << " " << 1./degrees_of_freedom << " " << mean(ichisq) << ' ' << variance(ichisq) << ' ' << standard_deviation(ichisq) << ' ' << median(ichisq) << endl; } */ inverse_chi_squared_distribution<> ichisq14(14, 1); // Using default RealType double. BOOST_CHECK_CLOSE_FRACTION(mean(ichisq14), 1.166666666666666666666666666666666666666666666, tol4eps); BOOST_CHECK_CLOSE_FRACTION(variance(ichisq14), 0.272222222222222222222222222222222222222222222, tol4eps); inverse_chi_squared_distribution<> ichisq121(12); // Using default RealType double. BOOST_CHECK_CLOSE_FRACTION(mean(ichisq121), 0.1, tol4eps); BOOST_CHECK_CLOSE_FRACTION(variance(ichisq121), 0.0025, tol4eps); BOOST_CHECK_CLOSE_FRACTION(standard_deviation(ichisq121), 0.05, tol4eps); // and "using boost::math::inverse_chi_squared_distribution;". inverse_chi_squared_distribution<> ichsq23(2., 3.); // Using default RealType double. BOOST_CHECK_EQUAL(ichsq23.degrees_of_freedom(), 2.); // BOOST_CHECK_EQUAL(ichsq23.scale(), 3.); // BOOST_MATH_CHECK_THROW(mean(ichsq23), std::domain_error); // Degrees of freedom (nu) must be > 2 BOOST_MATH_CHECK_THROW(variance(ichsq23), std::domain_error); // Degrees of freedom (nu) must be > 4 BOOST_MATH_CHECK_THROW(skewness(ichsq23), std::domain_error); // Degrees of freedom (nu) must be > 6 BOOST_MATH_CHECK_THROW(kurtosis_excess(ichsq23), std::domain_error); // Degrees of freedom (nu) must be > 8 { // Check relationship between inverse gamma and inverse chi_squared distributions. using boost::math::inverse_gamma_distribution; double df = 2.; double scale = 1.; double alpha = df/2; // aka inv_gamma shape double beta = scale /2; // inv_gamma scale. inverse_gamma_distribution<> ig(alpha, beta); inverse_chi_squared_distribution<> ichsq(df, 1./df); // == default scale. BOOST_CHECK_EQUAL(pdf(ichsq, 0), 0); // Special case of zero x. double x = 0.5; BOOST_CHECK_EQUAL(pdf(ig, x), pdf(ichsq, x)); // inv_gamma compared to inv_chisq BOOST_CHECK_EQUAL(cdf(ichsq, 0), 0); // Special case of zero. BOOST_CHECK_EQUAL(cdf(ig, x), cdf(ichsq, x)); // invgamma == invchisq // Test pdf by comparing using naive_pdf with relation to inverse gamma distribution // wikipedia http://en.wikipedia.org/wiki/Scaled-inverse-chi-square_distribution related distributions. // So if naive_pdf is correct, inverse_chi_squared_distribution should agree. df = 1.; scale = 1.; BOOST_CHECK_CLOSE_FRACTION(naive_pdf(df, scale, x), pdf(ichsq11, x), tol_few_eps); //inverse_gamma_distribution<> igd(df/2, (df * scale)/2); inverse_gamma_distribution<> igd11(df/2, df * scale/2); BOOST_CHECK_CLOSE_FRACTION(naive_pdf(df, scale, x), pdf(igd11, x), tol_few_eps); BOOST_CHECK_CLOSE_FRACTION(naive_pdf(df, scale, x), pdf(ichsq11, x), tol_few_eps); df = 2; scale = 1; inverse_gamma_distribution<> igd21(df/2, df * scale/2); inverse_chi_squared_distribution<> ichsq21(df, scale); BOOST_CHECK_CLOSE_FRACTION(naive_pdf(df, scale, x), pdf(igd21, x), tol_few_eps); // 0.54134113294645081 OK BOOST_CHECK_CLOSE_FRACTION(naive_pdf(df, scale, x), pdf(ichsq21, x), tol_few_eps); df = 2; scale = 2; inverse_gamma_distribution<> igd22(df/2, df * scale/2); inverse_chi_squared_distribution<> ichsq22(df, scale); BOOST_CHECK_CLOSE_FRACTION(naive_pdf(df, scale, x), pdf(igd22, x), tol_few_eps); BOOST_CHECK_CLOSE_FRACTION(naive_pdf(df, scale, x), pdf(ichsq22, x), tol_few_eps); } // Check using float. inverse_chi_squared_distribution igf23(1.f, 2.f); // Using explicit RealType float. BOOST_CHECK_EQUAL(igf23.degrees_of_freedom(), 1.f); // BOOST_CHECK_EQUAL(igf23.scale(), 2.f); // // Check throws from bad parameters. inverse_chi_squared ig051(0.5, 1.); // degrees_of_freedom < 1, so wrong for mean. BOOST_MATH_CHECK_THROW(mean(ig051), std::domain_error); inverse_chi_squared ig191(1.9999, 1.); // degrees_of_freedom < 2, so wrong for variance. BOOST_MATH_CHECK_THROW(variance(ig191), std::domain_error); inverse_chi_squared ig291(2.9999, 1.); // degrees_of_freedom < 3, so wrong for skewness. BOOST_MATH_CHECK_THROW(skewness(ig291), std::domain_error); inverse_chi_squared ig391(3.9999, 1.); // degrees_of_freedom < 1, so wrong for kurtosis and kurtosis_excess. BOOST_MATH_CHECK_THROW(kurtosis(ig391), std::domain_error); BOOST_MATH_CHECK_THROW(kurtosis_excess(ig391), std::domain_error); inverse_chi_squared ig102(10, 2); // Wolfram.com/ page 2, quantile = 2.96859. //http://reference.wolfram.com/mathematica/ref/InverseChiSquareDistribution.html BOOST_CHECK_CLOSE_FRACTION(quantile(ig102, 0.75), 2.96859, 0.000001); BOOST_CHECK_CLOSE_FRACTION(cdf(ig102, 2.96859), 0.75 , 0.000001); BOOST_CHECK_CLOSE_FRACTION(cdf(complement(ig102, 2.96859)), 1 - 0.75 , 0.00001); BOOST_CHECK_CLOSE_FRACTION(quantile(complement(ig102, 1 - 0.75)), 2.96859, 0.000001); // Basic sanity-check spot values. // (Parameter value, arbitrarily zero, only communicates the floating point type). test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 % test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 % #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_spots(0.0L); // Test long double. #if !BOOST_WORKAROUND(BOOST_BORLANDC, BOOST_TESTED_AT(0x0582)) test_spots(boost::math::concepts::real_concept(0.)); // Test real concept. #endif #else std::cout << "The long double tests have been disabled on this platform " "either because the long double overloads of the usual math functions are " "not available at all, or because they are too inaccurate for these tests " "to pass." << std::endl; #endif /* */ } // BOOST_AUTO_TEST_CASE( test_main ) /* Output: */