// Copyright John Maddock 2013 // Copyright Christopher Kormanyos 2013. // Copyright Paul A. Bristow 2013. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifdef _MSC_VER # pragma warning(disable : 4127) // conditional expression is constant. # pragma warning(disable : 4512) // assignment operator could not be generated. # pragma warning(disable : 4996) // use -D_SCL_SECURE_NO_WARNINGS. #endif //#include // commented out during testing. //#include #include #include #include #include #include // for real_concept #define BOOST_TEST_MAIN #include // Boost.Test #include #include #include #include // #include void test_bessel_zeros(RealType) { // Basic sanity checks for finding zeros of Bessel and Airy function. // where template parameter RealType can be float, double, long double, // or real_concept, a prototype for user-defined floating-point types. // Parameter RealType is only used to communicate the RealType, float, double... // and is an arbitrary zero for all tests. RealType tolerance = 5 * (std::max)( static_cast(boost::math::tools::epsilon()), boost::math::tools::epsilon()); std::cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << "." << std::endl; // // An extra fudge factor for real_concept which has a less accurate tgamma: RealType tolerance_tgamma_extra = std::numeric_limits::is_specialized ? 1 : 15; // http://www.wolframalpha.com/ using boost::math::cyl_bessel_j_zero; // (nu, j) using boost::math::isnan; BOOST_MATH_CHECK_THROW(cyl_bessel_j_zero(static_cast(0), 0), std::domain_error); // BOOST_MATH_CHECK_THROW(cyl_bessel_j_zero(static_cast(-1), 2), std::domain_error); // From 83051 negative orders are supported. // Abuse with infinity and max. if (std::numeric_limits::has_infinity) { //BOOST_CHECK_EQUAL(cyl_bessel_j_zero(static_cast(std::numeric_limits::infinity()), 1), // static_cast(std::numeric_limits::infinity()) ); // unknown location(0): fatal error in "test_main": // class boost::exception_detail::clone_impl >: // Error in function boost::math::cyl_bessel_j_zero(double, int): Order argument is 1.#INF, but must be finite >= 0 ! // Note that the reported type long double is not the type of the original call RealType, // but the promoted value, here long double, if applicable. BOOST_MATH_CHECK_THROW(cyl_bessel_j_zero(static_cast(std::numeric_limits::infinity()), 1), std::domain_error); BOOST_MATH_CHECK_THROW(cyl_bessel_j_zero(static_cast(-std::numeric_limits::infinity()), 1), std::domain_error); } // Test with maximum value of v that will cause evaluation error //BOOST_MATH_CHECK_THROW(cyl_bessel_j_zero(boost::math::tools::max_value(), 1), std::domain_error); // unknown location(0): fatal error in "test_main": // class boost::exception_detail::clone_impl >: // Error in function boost::math::bessel_jy(double,double): Order of Bessel function is too large to evaluate: got 3.4028234663852886e+038 BOOST_MATH_CHECK_THROW(cyl_bessel_j_zero(boost::math::tools::max_value(), 1), boost::math::evaluation_error); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(boost::math::tools::min_value(), 1), static_cast(2.4048255576957727686216318793264546431242449091460L), tolerance); BOOST_CHECK_CLOSE_FRACTION(-cyl_bessel_j_zero(boost::math::tools::min_value(), 1), static_cast(-2.4048255576957727686216318793264546431242449091460L), tolerance); // Checks on some spot values. // http://mathworld.wolfram.com/BesselFunctionZeros.html provides some spot values, // evaluation at 50 decimal digits using WoldramAlpha. /* Table[N[BesselJZero[0, n], 50], {n, 1, 5, 1}] n | 1 | 2.4048255576957727686216318793264546431242449091460 2 | 5.5200781102863106495966041128130274252218654787829 3 | 8.6537279129110122169541987126609466855657952312754 4 | 11.791534439014281613743044911925458922022924699695 5 | 14.930917708487785947762593997388682207915850115633 */ BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(0), 1), static_cast(2.4048255576957727686216318793264546431242449091460L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(0), 2), static_cast(5.5200781102863106495966041128130274252218654787829L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(0), 3), static_cast(8.6537279129110122169541987126609466855657952312754L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(0), 4), static_cast(11.791534439014281613743044911925458922022924699695L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(0), 5), static_cast(14.930917708487785947762593997388682207915850115633L), tolerance); { // Same test using the multiple zeros version. std::vector zeros; cyl_bessel_j_zero(static_cast(0.0), 1, 3, std::back_inserter(zeros) ); BOOST_CHECK_CLOSE_FRACTION(zeros[0], static_cast(2.4048255576957727686216318793264546431242449091460L), tolerance); BOOST_CHECK_CLOSE_FRACTION(zeros[1], static_cast(5.5200781102863106495966041128130274252218654787829L), tolerance); BOOST_CHECK_CLOSE_FRACTION(zeros[2], static_cast(8.6537279129110122169541987126609466855657952312754L), tolerance); } // 1/1000 a small order. /* Table[N[BesselJZero[1/1000, n], 50], {n, 1, 4, 1}] n | 1 | 2.4063682720422009275161970278295108254321633626292 2 | 5.5216426858401848664019464270992222126391378706092 3 | 8.6552960859298799453893840513333150237193779482071 4 | 11.793103797689738596231262077785930962647860975357 Table[N[BesselJZero[1/1000, n], 50], {n, 10, 20, 1}] n | 10 | 30.636177039613574749066837922778438992469950755736 11 | 33.777390823252864715296422192027816488172667994611 12 | 36.918668992567585467000743488690258054442556198147 13 | 40.059996426251227493370316149043896483196561190610 14 | 43.201362392820317233698309483240359167380135262681 15 | 46.342759065846108737848449985452774243376260538634 16 | 49.484180603489984324820981438067325210499739716337 17 | 52.625622557085775090390071484188995092211215108718 18 | 55.767081479279692992978326069855684800673801918763 19 | 58.908554657366270044071505013449016741804538135905 20 | 62.050039927521244984641179233170843941940575857282 */ BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(1)/1000, 1), static_cast(2.4063682720422009275161970278295108254321633626292L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(1)/1000, 4), static_cast(11.793103797689738596231262077785930962647860975357L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(1)/1000, 10), static_cast(30.636177039613574749066837922778438992469950755736L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(1)/1000, 20), static_cast(62.050039927521244984641179233170843941940575857282L), tolerance); /* Table[N[BesselJZero[1, n], 50], {n, 1, 4, 1}] n | 1 | 3.8317059702075123156144358863081607665645452742878 2 | 7.0155866698156187535370499814765247432763115029142 3 | 10.173468135062722077185711776775844069819512500192 4 | 13.323691936314223032393684126947876751216644731358 */ BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(1), 1), static_cast(3.8317059702075123156144358863081607665645452742878L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(1), 2), static_cast(7.0155866698156187535370499814765247432763115029142L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(1), 3), static_cast(10.173468135062722077185711776775844069819512500192L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(1), 4), static_cast(13.323691936314223032393684126947876751216644731358L), tolerance); /* Table[N[BesselJZero[5, n], 50], {n, 1, 5, 1}] n | 1 | 8.7714838159599540191228671334095605629810770148974 2 | 12.338604197466943986082097644459004412683491122239 3 | 15.700174079711671037587715595026422501346662246893 4 | 18.980133875179921120770736748466932306588828411497 5 | 22.217799896561267868824764947529187163096116704354 */ BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(5), 1), static_cast(8.7714838159599540191228671334095605629810770148974L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(5), 2), static_cast(12.338604197466943986082097644459004412683491122239L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(5), 3), static_cast(15.700174079711671037587715595026422501346662246893L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(5), 4), static_cast(18.980133875179921120770736748466932306588828411497L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(5), 5), static_cast(22.217799896561267868824764947529187163096116704354L), tolerance); // An intermediate order /* Table[N[BesselJZero[71/19, n], 50], {n, 1, 20, 1}] 7.27317519383164895031856942622907655889631967016227, 10.7248583088831417325361727458514166471107495990849, 14.0185045994523881061204595580426602824274719315813, 17.2524984591704171821624871665497773491959038386104, 20.4566788740445175951802340838942858854605020778141, 23.6436308971423452249455142271473195998540517250404, 26.8196711402550877454213114709650192615223905192969, 29.9883431174236747426791417966614320438788681941419, 33.1517968976905208712508624699734452654447919661140, 36.3114160002162074157243540350393860813165201842005, 39.4681324675052365879451978080833378877659670320292, 42.6225978013912364748550348312979540188444334802274, 45.7752814645368477533902062078067265814959500124386, 48.9265304891735661983677668174785539924717398947994, 52.0766070453430027942797460418789248768734780634716, 55.2257129449125713935942243278172656890590028901917, 58.3740061015388864367751881504390252017351514189321, 61.5216118730009652737267426593531362663909441035715, 64.6686310537909303683464822148736607945659662871596, 67.8151456196962909255567913755559511651114605854579 */ BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(71)/19, 1), static_cast(7.27317519383164895031856942622907655889631967016227L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(71)/19, 4), static_cast(17.2524984591704171821624871665497773491959038386104L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(71)/19, 10), static_cast(36.3114160002162074157243540350393860813165201842005L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(71)/19, 20), static_cast(67.8151456196962909255567913755559511651114605854579L), tolerance); /* Table[N[BesselJZero[7001/19, n], 50], {n, 1, 2, 1}] 1 | 381.92201523024489386917204470434842699154031135348 2 | 392.17508657648737502651299853099852567001239217724 Table[N[BesselJZero[7001/19, n], 50], {n, 19, 20, 1}] 19 | 491.67809669154347398205298745712766193052308172472 20 | 496.39435037938252557535375498577989720272298310802 */ BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(7001)/19, 1), static_cast(381.92201523024489386917204470434842699154031135348L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(7001)/19, 2), static_cast(392.17508657648737502651299853099852567001239217724L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(7001)/19, 20), static_cast(496.39435037938252557535375498577989720272298310802L), tolerance); // Some non-integral tests. BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(3.73684210526315789473684210526315789473684210526315789L), 1), static_cast(7.273175193831648950318569426229076558896319670162279791988152000556091140599946365217211157877052381L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(3.73684210526315789473684210526315789473684210526315789L), 20), static_cast(67.81514561969629092555679137555595116511146058545787883557679231060644931096494584364894743334132014L), tolerance); // Some non-integral tests in 'tough' regions. // Order 219/100: This checks a region just below a critical cutoff. BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(219)/100, 1), static_cast(5.37568854370623186731066365697341253761466705063679L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(219)/100, 2), static_cast(8.67632060963888122764226633146460596009874991130394L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(219)/100, 20), static_cast(65.4517712237598926858973399895944886397152223643028L), tolerance); // Order 221/100: This checks a region just above a critical cutoff. BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(221)/100, 1), static_cast(5.40084731984998184087380740054933778965260387203942L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(221)/100, 2), static_cast(8.70347906513509618445695740167369153761310106851599L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(221)/100, 20), static_cast(65.4825314862621271716158606625527548818843845600782L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(7001)/19, 1), static_cast(381.922015230244893869172044704348426991540311353476L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(7001)/19, 2), static_cast(392.175086576487375026512998530998525670012392177242L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(7001)/19, 20), static_cast(496.394350379382525575353754985779897202722983108025L), tolerance); // Zero'th cases. BOOST_MATH_CHECK_THROW(boost::math::cyl_bessel_j_zero(static_cast(0), 0), std::domain_error); // Zero'th zero of J0(x). BOOST_CHECK(boost::math::cyl_bessel_j_zero(static_cast(1), 0) == 0); // Zero'th zero of J1(x). BOOST_CHECK(boost::math::cyl_bessel_j_zero(static_cast(2), 0) == 0); // Zero'th zero of J2(x). // Negative order cases. // Table[N[BesselJZero[-39, n], 51], {n, 1, 20, 1}] // 45.597624026432090522996531982029164361723758769649 BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(-39), 1), static_cast(45.597624026432090522996531982029164361723758769649L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(-39), 2), static_cast(50.930599960211455519691708196247756810739999585797L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(-39), 4), static_cast(59.810708207036942166964205243063534405954475825070L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(-39), 10), static_cast(82.490310026657839398140015188318580114553721419436L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(-39), 15), static_cast(99.886172950858129702511715161572827825877395517083L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(-39), 20), static_cast(116.73117751356457774415638043701531989536641098359L), tolerance); // Table[N[BesselJZero[-39 - (1/3), n], 51], {n, 1, 20, 1}] // 43.803165820025277290601047312311146608776920513241 // 49.624678304306778749502719837270544976331123155017 RealType v = static_cast(-39); v -= boost::math::constants::third(); // BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 1), static_cast(43.803165820025277290601047312311146608776920513241L), tolerance); // BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(-39) - static_cast(1)/3, 1), static_cast(43.803165820025277290601047312311146608776920513241L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 2), static_cast(49.624678304306778749502719837270544976331123155017L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(-39) - static_cast(0.333333333333333333333333333333333333333333333L), 5), static_cast(62.911281619408963609400485687996804820400102193455L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(-39) - static_cast(0.333333333333333333333333333333333333333333333L), 10), static_cast(81.705998611506506523381866527389118594062841737382L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(static_cast(-39) - static_cast(0.333333333333333333333333333333333333333333333L), 20), static_cast(116.05368337161392034833932554892349580959931408963L), tolerance * 4); // Table[N[BesselJZero[-1/3, n], 51], {n, 1, 20, 1}] // 1.86635085887389517154698498025466055044627209492336 // 4.98785323143515872689263163814239463653891121063534 v = - boost::math::constants::third(); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 1), static_cast(1.86635085887389517154698498025466055044627209492336L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 2), static_cast(4.98785323143515872689263163814239463653891121063534L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 5), static_cast(14.4037758801360172217813556328092353168458341692115L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 20), static_cast(61.5239847181314647255554392599009248210564008120358L), tolerance); // Table[N[BesselJZero[-3 - (999999/1000000), n], 51], {n, 1, 20, 1}] // 0.666908567552422764702292353801313970109968787260547 //7.58834489983121936102504707121493271448122800440112 std::cout.precision(2 + std::numeric_limits::digits * 3010/10000); v = -static_cast(3); //std::cout << "v = " << v << std::endl; RealType d = static_cast(999999)/1000000; // Value very near to unity. //std::cout << "d = " << d << std::endl; v -= d; // std::cout << "v = " << v << std::endl; // v = -3.9999989999999999 // 1st is much less accurate. BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 1), static_cast(0.666908567552422764702292353801313970109968787260547L), tolerance * 500000); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 2), static_cast(7.58834489983121936102504707121493271448122800440112L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 5), static_cast(17.6159678964372778134202353240221384945968807948928L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 20), static_cast(65.0669968910414433560468307554730940098734494938136L), tolerance); v = -static_cast(1)/81799; // Largish prime, so small value. // std::cout << "v = " << v << std::endl; // v = -1.22251e-005 // Table[N[BesselJZero[-1/81799, n], 51], {n, 1, 20, 1}] // 2.40480669570616362235270726259606288441474232101937 //5.52005898213436490056801834487410496538653938730884 BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 1), static_cast(2.40480669570616362235270726259606288441474232101937L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 2), static_cast(5.52005898213436490056801834487410496538653938730884L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 5), static_cast(14.9308985160466385806685583210609848822943295303368L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_bessel_j_zero(v, 20), static_cast(62.0484499877253314338528593349200129641402661038743L), tolerance); // Confirm that negative m throws domain_error. BOOST_MATH_CHECK_THROW(boost::math::cyl_bessel_j_zero(static_cast(0), -1), std::domain_error); // unknown location(0): fatal error in "test_main": // class boost::exception_detail::clone_impl >: // Error in function boost::math::cyl_bessel_j_zero(double, int): Requested the -1'th zero, but must be > 0 ! // Confirm that a C-style ignore_all policy returns NaN for bad input. typedef boost::math::policies::policy< boost::math::policies::domain_error, boost::math::policies::overflow_error, boost::math::policies::underflow_error, boost::math::policies::denorm_error, boost::math::policies::pole_error, boost::math::policies::evaluation_error > ignore_all_policy; if (std::numeric_limits::has_quiet_NaN) { BOOST_MATH_CHECK_THROW(cyl_bessel_j_zero(static_cast(std::numeric_limits::quiet_NaN()), 1), std::domain_error); // Check that bad m returns NaN if policy is no throws. BOOST_CHECK((boost::math::isnan)(cyl_bessel_j_zero(std::numeric_limits::quiet_NaN(), 1, ignore_all_policy())) ); BOOST_MATH_CHECK_THROW(boost::math::cyl_bessel_j_zero(static_cast(std::numeric_limits::quiet_NaN()), -1), std::domain_error); } else { // real_concept bad m returns zero. //std::cout << boost::math::cyl_bessel_j_zero(static_cast(0), -1, ignore_all_policy()) << std::endl; // 0 for real_concept. BOOST_CHECK_EQUAL(boost::math::cyl_bessel_j_zero(static_cast(0), -1, ignore_all_policy() ), 0); } if (std::numeric_limits::has_infinity) { BOOST_MATH_CHECK_THROW(cyl_bessel_j_zero(std::numeric_limits::infinity(), 0), std::domain_error); BOOST_MATH_CHECK_THROW(cyl_bessel_j_zero(std::numeric_limits::infinity(), 1), std::domain_error); // Check that NaN is returned if error ignored. BOOST_CHECK((boost::math::isnan)(cyl_bessel_j_zero(std::numeric_limits::infinity(), 1, ignore_all_policy())) ); } // Tests of cyc_neumann zero function (BesselYZero in Wolfram) for spot values. /* Table[N[BesselYZero[0, n], 50], {n, 1, 5, 1}] n | 1 | 0.89357696627916752158488710205833824122514686193001 2 | 3.9576784193148578683756771869174012814186037655636 3 | 7.0860510603017726976236245968203524689715103811778 4 | 10.222345043496417018992042276342187125994059613181 5 | 13.361097473872763478267694585713786426579135174880 Table[N[BesselYZero[0, n], 50], {n, 1, 5, 1}] n | 1 | 0.89357696627916752158488710205833824122514686193001 2 | 3.9576784193148578683756771869174012814186037655636 3 | 7.0860510603017726976236245968203524689715103811778 4 | 10.222345043496417018992042276342187125994059613181 5 | 13.361097473872763478267694585713786426579135174880 So K == Y Table[N[BesselYZero[1, n], 50], {n, 1, 5, 1}] n | 1 | 2.1971413260310170351490335626989662730530183315003 2 | 5.4296810407941351327720051908525841965837574760291 3 | 8.5960058683311689264296061801639678511029215669749 4 | 11.749154830839881243399421939922350714301165983279 5 | 14.897442128336725378844819156429870879807150630875 Table[N[BesselYZero[2, n], 50], {n, 1, 5, 1}] n | 1 | 3.3842417671495934727014260185379031127323883259329 2 | 6.7938075132682675382911671098369487124493222183854 3 | 10.023477979360037978505391792081418280789658279097 4 | 13.209986710206416382780863125329852185107588501072 5 | 16.378966558947456561726714466123708444627678549687 */ // Some simple integer values. using boost::math::cyl_neumann_zero; // Bad rank m. BOOST_MATH_CHECK_THROW(cyl_neumann_zero(static_cast(0), 0), std::domain_error); // BOOST_MATH_CHECK_THROW(cyl_neumann_zero(static_cast(0), -1), std::domain_error); if (std::numeric_limits::has_quiet_NaN) { BOOST_MATH_CHECK_THROW(cyl_neumann_zero(std::numeric_limits::quiet_NaN(), 1), std::domain_error); BOOST_MATH_CHECK_THROW(cyl_neumann_zero(static_cast(0), -1), std::domain_error); } if (std::numeric_limits::has_infinity) { BOOST_MATH_CHECK_THROW(cyl_neumann_zero(std::numeric_limits::infinity(), 2), std::domain_error); BOOST_MATH_CHECK_THROW(cyl_neumann_zero(static_cast(0), -1), std::domain_error); } // else no infinity tests. BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(0), 1), static_cast(0.89357696627916752158488710205833824122514686193001L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(1), 2), static_cast(5.4296810407941351327720051908525841965837574760291L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(2), 3), static_cast(10.023477979360037978505391792081418280789658279097L), tolerance); /* Table[N[BesselYZero[3, n], 50], {n, 1, 5, 1}] 1 | 4.5270246611496438503700268671036276386651555486109 2 | 8.0975537628604907044022139901128042290432231369075 3 | 11.396466739595866739252048190629504945984969192535 4 | 14.623077742393873174076722507725200649352970569915 5 | 17.818455232945520262553239064736739443380352162752 */ BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(3), 1), static_cast(4.5270246611496438503700268671036276386651555486109L), tolerance * 2); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(3), 2), static_cast(8.0975537628604907044022139901128042290432231369075L), tolerance * 2); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(3), 3), static_cast(11.396466739595866739252048190629504945984969192535L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(3), 4), static_cast(14.623077742393873174076722507725200649352970569915L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(3), 5), static_cast(17.818455232945520262553239064736739443380352162752L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-3), 1), static_cast(4.5270246611496438503700268671036276386651555486109L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-3), 2), static_cast(8.0975537628604907044022139901128042290432231369075L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-3), 3), static_cast(11.396466739595866739252048190629504945984969192535L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-3), 4), static_cast(14.623077742393873174076722507725200649352970569915L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-3), 5), static_cast(17.818455232945520262553239064736739443380352162752L), tolerance); { // Repeat rest using multiple zeros version. std::vector zeros; cyl_neumann_zero(static_cast(0.0), 1, 3, std::back_inserter(zeros) ); BOOST_CHECK_CLOSE_FRACTION(zeros[0], static_cast(0.89357696627916752158488710205833824122514686193001L), tolerance); BOOST_CHECK_CLOSE_FRACTION(zeros[1], static_cast(3.9576784193148578683756771869174012814186037655636L), tolerance); BOOST_CHECK_CLOSE_FRACTION(zeros[2], static_cast(7.0860510603017726976236245968203524689715103811778L), tolerance); } // Order 0: Something always tends to go wrong at zero. /* Order 219/100: This checks accuracy in a region just below a critical cutoff. Table[N[BesselKZero[219/100, n], 50], {n, 1, 20, 4}] 1 | 3.6039149425338727979151181355741147312162055042157 5 | 16.655399111666833825247894251535326778980614938275 9 | 29.280564448169163756478439692311605757712873534942 13 | 41.870269811145814760551599481942750124112093564643 17 | 54.449180021209532654553613813754733514317929678038 */ BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(219)/100, 1), static_cast(3.6039149425338727979151181355741147312162055042157L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(219)/100, 5), static_cast(16.655399111666833825247894251535326778980614938275L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(219)/100, 17), static_cast(54.449180021209532654553613813754733514317929678038L), tolerance); /* Order 221/100: This checks a region just above a critical cutoff. Table[N[BesselYZero[220/100, n], 50], {n, 1, 20, 5}] 1 | 3.6154383428745996706772556069431792744372398748425 6 | 19.833435100254138641131431268153987585842088078470 11 | 35.592602956438811360473753622212346081080817891225 16 | 51.320322762482062633162699745957897178885350674038 */ BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(220)/100, 1), static_cast(3.6154383428745996706772556069431792744372398748425L), 2 * tolerance); // Note * 2 tolerance needed - using cpp_dec_float_50 it computes exactly, probably because of extra guard digits in multiprecision decimal version. BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(220)/100, 6), static_cast(19.833435100254138641131431268153987585842088078470L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(220)/100, 11), static_cast(35.592602956438811360473753622212346081080817891225L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(220)/100, 16), static_cast(51.320322762482062633162699745957897178885350674038L), tolerance); /* Order 1/1000: A small order. Table[N[BesselYZero[1/1000, n], 50], {n, 1, 20, 5}] 1 | 0.89502371604431360670577815537297733265776195646969 6 | 16.502492490954716850993456703662137628148182892787 11 | 32.206774708309182755790609144739319753463907110990 16 | 47.913467031941494147962476920863688176374357572509 */ BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(1)/1000, 1), static_cast(0.89502371604431360670577815537297733265776195646969L), 2 * tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(1)/1000, 6), static_cast(16.5024924909547168509934567036621376281481828927870L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(1)/1000, 11), static_cast(32.206774708309182755790609144739319753463907110990L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(1)/1000, 16), static_cast(47.913467031941494147962476920863688176374357572509L), tolerance); /* Order 71/19: Merely an intermediate order. Table[N[BesselYZero[71/19, n], 50], {n, 1, 20, 5}] 1 | 5.3527167881149432911848659069476821793319749146616 6 | 22.051823727778538215953091664153117627848857279151 11 | 37.890091170552491176745048499809370107665221628364 16 | 53.651270581421816017744203789836444968181687858095 */ BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(71)/19, 1), static_cast(5.3527167881149432911848659069476821793319749146616L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(71)/19, 6), static_cast(22.051823727778538215953091664153117627848857279151L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(71)/19, 11), static_cast(37.890091170552491176745048499809370107665221628364L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(71)/19, 16), static_cast(53.651270581421816017744203789836444968181687858095L), tolerance); /* Order 7001/19: A medium-large order, small enough to retain moderate efficiency of calculation. Table[N[BesselYZero[7001/19, n], 50], {n, 1}] 1 | 375.18866334770357669101711932706658671250621098115 Table[N[BesselYZero[7001/19, n], 50], {n, 2}] Standard computation time exceeded :-( */ BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(7001)/19, 1), static_cast(375.18866334770357669101711932706658671250621098115L), tolerance); /* A high zero such as the 1000th zero for a modest order such as 71/19. Table[N[BesselYZero[71/19, n], 50], {n, 1000}] Standard computation time exceeded :-( */ /* Test Negative orders cyl_neumann. Table[N[BesselYZero[-1, n], 50], {n, 1, 10, 1}] 1 | 2.1971413260310170351490335626989662730530183315003 2 | 5.4296810407941351327720051908525841965837574760291 3 | 8.5960058683311689264296061801639678511029215669749 4 | 11.749154830839881243399421939922350714301165983279 5 | 14.897442128336725378844819156429870879807150630875 6 | 18.043402276727855564304555507889508902163088324834 7 | 21.188068934142213016142481528685423196935024604904 8 | 24.331942571356912035992944051850129651414333340303 9 | 27.475294980449223512212285525410668235700897307021 10 | 30.618286491641114715761625696447448310277939570868 11 | 33.761017796109325692471759911249650993879821495802 16 | 49.472505679924095824128003887609267273294894411716 */ BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-1), 1), static_cast(2.1971413260310170351490335626989662730530183315003L), tolerance * 3); // Note this test passes at tolerance for float, double and long double, but fails for real_concept if tolerance <= 2. BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-1), 6), static_cast(18.043402276727855564304555507889508902163088324834L), tolerance * 3); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-1), 11), static_cast(33.761017796109325692471759911249650993879821495802L), tolerance * 3); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-1), 16), static_cast(49.472505679924095824128003887609267273294894411716L), tolerance * 3); /* Table[N[BesselYZero[-2, n], 50], {n, 1, 20, 5}] 1 | 3.3842417671495934727014260185379031127323883259329 6 | 19.539039990286384411511740683423888947393156497603 11 | 35.289793869635804143323234828826075805683602368473 16 | 51.014128749483902310217774804582826908060740157564 */ BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-2), 1), static_cast(3.3842417671495934727014260185379031127323883259329L), tolerance * 3); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-2), 6), static_cast(19.539039990286384411511740683423888947393156497603L), tolerance * 3); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-2), 11), static_cast(35.289793869635804143323234828826075805683602368473L), tolerance * 3); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-2), 16), static_cast(51.014128749483902310217774804582826908060740157564L), tolerance * 3); /* Table[N[BesselYZero[-3, n], 51], {n, 1, 7, 1}] 1 | 4.52702466114964385037002686710362763866515554861094 2 | 8.09755376286049070440221399011280422904322313690750 3 | 11.3964667395958667392520481906295049459849691925349 4 | 14.6230777423938731740767225077252006493529705699150 5 | 17.8184552329455202625532390647367394433803521627517 6 | 20.9972847541877606834525058939528641630713169437070 7 | 24.1662357585818282287385597668220226288453739040042 */ BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-3), 1), static_cast(4.52702466114964385037002686710362763866515554861094L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-3), 2), static_cast(8.09755376286049070440221399011280422904322313690750L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-3), 4), static_cast(14.6230777423938731740767225077252006493529705699150L), tolerance); /* Table[N[BesselKZero[-39, n], 51], {n, 1, 20, 5}] 1 | 42.2362394762664681287397356668342141701037684436723 6 | 65.8250353430045981408288669790173009159561533403819 11 | 84.2674082411341814641248554679382420802125973458922 16 | 101.589776978258493441843447810649346266014624868410 */ BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-39), 1), static_cast(42.2362394762664681287397356668342141701037684436723L), tolerance ); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-39), 6), static_cast(65.8250353430045981408288669790173009159561533403819L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-39), 11), static_cast(84.2674082411341814641248554679382420802125973458922L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-39), 16), static_cast(101.589776978258493441843447810649346266014624868410L), tolerance); /* Table[N[BesselKZero[-39 -(1/3), n], 51], {n, 1, 20, 5}] 1 | 39.3336965099558453809241429692683050137281997313679 6 | 64.9038181444904768984884565999608291433823953030822 11 | 83.4922341795560713832607574604255239776551554961143 16 | 100.878386349724826125265571457142254077564666532665 */ BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-39) - static_cast(1)/3, 1), static_cast(39.3336965099558453809241429692683050137281997313679L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-39) - static_cast(1)/3, 6), static_cast(64.9038181444904768984884565999608291433823953030822L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-39) - static_cast(1)/3, 11), static_cast(83.4922341795560713832607574604255239776551554961143L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-39) - static_cast(1)/3, 16), static_cast(100.878386349724826125265571457142254077564666532665L), tolerance * 4); /* Table[N[BesselKZero[-(1/3), n], 51], {n, 1, 20, 5}] n | 1 | 0.364442931311036254896373762996743259918847602789703 6 | 15.9741013584105984633772025789145590038676373673203 11 | 31.6799168750213003020847708007848147516190373648194 16 | 47.3871543280673235432396563497681616285970326011211 */ BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-static_cast(1)/3, 1), static_cast(0.364442931311036254896373762996743259918847602789703L), tolerance * 10); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-static_cast(1)/3, 6), static_cast(15.9741013584105984633772025789145590038676373673203L), tolerance * 10); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-static_cast(1)/3, 11), static_cast(31.6799168750213003020847708007848147516190373648194L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-static_cast(1)/3, 16), static_cast(47.3871543280673235432396563497681616285970326011211L), tolerance * 4); /* Table[N[BesselKZero[-3 -(9999/10000), n], 51], {n, 1, 20, 5}] 1 | 5.64546089250283694562642537496601708928630550185069 2 | 9.36184180108088288881787970896747209376324330610979 3 | 12.7303431758275183078115963473808796340618061355885 4 | 15.9998152121877557837972245675029531998475502716021 6 | 9.36184180108088288881787970896747209376324330610979 11 | 25.6104419106589739931633042959774157385787405502820 16 | 41.4361281441868132581487460354904567452973524446193 */ BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-3) -static_cast(9999)/10000, 1), static_cast(5.64546089250283694562642537496601708928630550185069L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-3) -static_cast(9999)/10000, 2), static_cast(9.36184180108088288881787970896747209376324330610979L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-3) -static_cast(9999)/10000, 3), static_cast(12.7303431758275183078115963473808796340618061355885L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-3) -static_cast(9999)/10000, 4), static_cast(15.9998152121877557837972245675029531998475502716021L), tolerance * 4); /* Table[N[BesselYZero[-3 -(9999/10000), n], 51], {n, 1, 7, 1}] 1 | 5.64546089250283694562642537496601708928630550185069 2 | 9.36184180108088288881787970896747209376324330610979 3 | 12.7303431758275183078115963473808796340618061355885 4 | 15.9998152121877557837972245675029531998475502716021 // but 5 is same as 1!! Acknowledged as fault Wolfram [TS 6475] 26 Feb 13. 5 | 5.64546089250283694562642537496601708928630550184982 6 | 9.36184180108088288881787970896747209376324330610979 7 | 12.7303431758275183078115963473808796340618061355885 In[26]:= FindRoot[BesselY[-3 -9999/10000, r] == 0, {r, 3}] for r = 2,3, 4, 5 = {r->5.64546} In[26]:= FindRoot[BesselY[-3 -9999/10000, r] == 0, {r, 19}] = 19.2246 So no very accurate reference value for these. Calculated using cpp_dec_float_50 5.6454608925028369456264253749660170892863055018498 9.3618418010808828888178797089674720937632433061099 12.730343175827518307811596347380879634061806135589 15.999815212187755783797224567502953199847550271602 19.224610865671563344572152795434688888375602299773 22.424988389021059116212186912990863561607855849204 25.610441910658973993163304295977415738578740550282 28.786066313968546073981640755202085944374967166411 31.954857624676521867923579695253822854717613513587 */ BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-3) -static_cast(9999)/10000, 1), static_cast(5.64546089250283694562642537496601708928630550185069L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-3) -static_cast(9999)/10000, 2), static_cast(9.36184180108088288881787970896747209376324330610979L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-3) -static_cast(9999)/10000, 3), static_cast(12.7303431758275183078115963473808796340618061355885L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-3) -static_cast(9999)/10000, 4), static_cast(15.9998152121877557837972245675029531998475502716021L), tolerance * 4); // BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-3) -static_cast(9999)/10000, 5), static_cast(19.224610865671563344572152795434688888375602299773L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-3) -static_cast(9999)/10000, 6), static_cast(22.424988389021059116212186912990863561607855849204L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-3) -static_cast(9999)/10000, 7), static_cast(25.610441910658973993163304295977415738578740550282L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-3) -static_cast(9999)/10000, 8), static_cast(28.786066313968546073981640755202085944374967166411L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-3) -static_cast(9999)/10000, 9), static_cast(31.954857624676521867923579695253822854717613513587L), tolerance * 4); // Plot[BesselYZero[-7 - v, 1], {v, 0, 1}] shows discontinuity at the mid-point between integers. /* Table[N[BesselYZero[-7 - (4999/10000), n], 51], {n, 1, 4, 1}] 1 | 3.59209698655443348407622952525352410710983745802573 2 | 11.6573245781899449398248761667833391837824916603434 3 | 15.4315262542144355217979771618575628291362029097236 4 | 18.9232143766706670333395285892576635207736306576135 */ /* Table[N[BesselYZero[-7 - (5001/10000), n], 51], {n, 1, 4, 1}] 1 | 11.6567397956147934678808863468662427054245897492445 2 | 15.4310521624769624067699131497395566368341140531722 3 | 18.9227840182910629037411848072684247564491740961847 4 | 22.2951449444372591060253508661432751300205474374696 */ BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-7) -static_cast(4999)/10000, 1), static_cast(3.59209698655443348407622952525352410710983745802573L), tolerance * 2000); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-7) -static_cast(4999)/10000, 2), static_cast(11.6573245781899449398248761667833391837824916603434L), tolerance * 100); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-7) -static_cast(4999)/10000, 3), static_cast(15.4315262542144355217979771618575628291362029097236L), tolerance * 100); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-7) -static_cast(4999)/10000, 4), static_cast(18.9232143766706670333395285892576635207736306576135L), tolerance * 100); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-7) -static_cast(5001)/10000, 1), static_cast(11.6567397956147934678808863468662427054245897492445L), tolerance * 100); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-7) -static_cast(5001)/10000, 2), static_cast(15.4310521624769624067699131497395566368341140531722L), tolerance * 100); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-7) -static_cast(5001)/10000, 3), static_cast(18.9227840182910629037411848072684247564491740961847L), tolerance * 100); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-7) -static_cast(5001)/10000, 4), static_cast(22.2951449444372591060253508661432751300205474374696L), tolerance * 100); //BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-(static_cast(-3)-static_cast(99)/100), 5), // cyl_neumann_zero(+(static_cast(-3)-static_cast(99)/100), 5), tolerance * 100); { long double x = 1.L; BOOST_CHECK_CLOSE_FRACTION( cyl_neumann_zero(-(static_cast(x)), 5), cyl_neumann_zero(+(static_cast(x)), 5), tolerance * 100); } { long double x = 2.L; BOOST_CHECK_CLOSE_FRACTION( cyl_neumann_zero(-(static_cast(x)), 5), cyl_neumann_zero(+(static_cast(x)), 5), tolerance * 100); } { long double x = 3.L; BOOST_CHECK_CLOSE_FRACTION( cyl_neumann_zero(-(static_cast(x)), 5), cyl_neumann_zero(+(static_cast(x)), 5), tolerance * 100); } // These are very close but not exactly same. //{ // RealType x = static_cast(-3) -static_cast(9999)/10000; // BOOST_CHECK_CLOSE_FRACTION( // cyl_neumann_zero(-(static_cast(x)), 5), // cyl_neumann_zero(+(static_cast(x)), 5), tolerance * 100); // // 19.2242889 and 19.2246113 //} //{ // RealType x = static_cast(-3) -static_cast(9999)/10000; // BOOST_CHECK_CLOSE_FRACTION( // cyl_neumann_zero(-(static_cast(x)), 6), // cyl_neumann_zero(+(static_cast(x)), 6), tolerance * 100); // // 22.4246693 and 22.4249878 //} // 2.5 18.6890354 17.1033592 /*Table[N[BesselYZero[-1/81799, n], 51], {n, 1, 10, 5}] 1 | 0.893559276290122922836047849416713592133322804889757 2 | 3.95765935645507004204986415533750122885237402118726 3 | 7.08603190350579828577279552434514387474680226004173 4 | 10.2223258629823064789904339889550588869985272176335 5 | 13.3610782840659145864973521693322670264135672594988 3 | 7.08603190350579828577279552434514387474680226004173 5 | 13.3610782840659145864973521693322670264135672594988 6 | 16.5009032471619898684110089652474861084220781491575 7 | 19.6412905039556082160052482410981245043314155416354 9 | 25.9229384536173175152381652048590136247796591153244 */ BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-static_cast(1)/81799, 1), static_cast(0.893559276290122922836047849416713592133322804889757L), tolerance * 4); // Doesn't converge! BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-static_cast(1)/81799, 2), static_cast(3.95765935645507004204986415533750122885237402118726L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-static_cast(1)/81799, 3), static_cast(7.08603190350579828577279552434514387474680226004173L), tolerance * 4); /* try positive x Table[N[BesselYZero[1/81799, n], 51], {n, 1, 5, 1}] 1 | 0.893594656187326273432267210617481926490785928764963 2 | 3.95769748213950546166537901626409026826595687994956 3 | 7.08607021707716361104064671367526817399129653285580 4 | 10.2223642239960815612515914411615233651316361060338 5 | 13.3611166636685056799674772287389749065996094266976 */ BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(1)/81799, 2), static_cast(3.95769748213950546166537901626409026826595687994956L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(1)/81799, 3), static_cast(7.08607021707716361104064671367526817399129653285580L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-static_cast(1)/81799, 4), static_cast(10.2223258629823064789904339889550588869985272176335L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-static_cast(1)/81799, 5), static_cast(13.3610782840659145864973521693322670264135672594988L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-static_cast(1)/81799, 6), static_cast(16.5009032471619898684110089652474861084220781491575L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(-static_cast(1)/81799, 9), static_cast(25.9229384536173175152381652048590136247796591153244L), tolerance * 4); BOOST_CHECK_CLOSE_FRACTION(cyl_neumann_zero(static_cast(-7) - static_cast(1)/3, 1), static_cast(7.3352783956690540155848592759652828459644819344081L), tolerance * 1000); // Test Data for airy_ai_zero and airy_bi_zero functions. using boost::math::airy_ai_zero; // using boost::math::isnan; BOOST_MATH_CHECK_THROW(airy_ai_zero(0), std::domain_error); if (std::numeric_limits::has_quiet_NaN) { // If ignore errors, return NaN. BOOST_CHECK((boost::math::isnan)(airy_ai_zero(0, ignore_all_policy()))); BOOST_CHECK((boost::math::isnan)(airy_ai_zero((std::numeric_limits::min)() , ignore_all_policy()))); // Can't abuse with NaN as won't compile. //BOOST_MATH_CHECK_THROW(airy_ai_zero(std::numeric_limits::quiet_NaN()), std::domain_error); } else { // real_concept NaN not available, so return zero. BOOST_CHECK_EQUAL(airy_ai_zero(0, ignore_all_policy()), 0); // BOOST_CHECK_EQUAL(airy_ai_zero(-1), 0); // warning C4245: 'argument' : conversion from 'int' to 'unsigned int', signed/unsigned mismatch } BOOST_MATH_CHECK_THROW(airy_ai_zero(-1), std::domain_error); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero((std::numeric_limits::max)()), -static_cast(4678579.33301973093739L), tolerance); // Can't abuse with infinity because won't compile - no conversion. //if (std::numeric_limits::has_infinity) //{ // BOOST_CHECK(isnan(airy_bi_zero(-1)) ); //} // WolframAlpha Table[N[AiryAiZero[n], 51], {n, 1, 20, 1}] BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(1), static_cast(-2.33810741045976703848919725244673544063854014567239L), tolerance * 2 * tolerance_tgamma_extra); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(2), static_cast(-4.08794944413097061663698870145739106022476469910853L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(3), static_cast(-5.52055982809555105912985551293129357379721428061753L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(4), static_cast(-6.78670809007175899878024638449617696605388247739349L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(5), static_cast(-7.94413358712085312313828055579826853214067439697221L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(6), static_cast(-9.02265085334098038015819083988008925652467753515608L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(7), static_cast(-10.0401743415580859305945567373625180940429025691058L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(8), static_cast(-11.0085243037332628932354396495901510167308253815040L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(9), static_cast(-11.9360155632362625170063649029305843155778862321198L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(10), static_cast(-12.8287767528657572004067294072418244773864155995734L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(11), static_cast(-13.6914890352107179282956967794669205416653698092008L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(12), static_cast(-14.5278299517753349820739814429958933787141648698348L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(13), static_cast(-15.3407551359779968571462085134814867051175833202480L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(14), static_cast(-16.1326851569457714393459804472025217905182723970763L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(15), static_cast(-16.9056339974299426270352387706114765990900510950317L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(16), static_cast(-17.6613001056970575092536503040180559521532186681200L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(17), static_cast(-18.4011325992071154158613979295043367545938146060201L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(18), static_cast(-19.1263804742469521441241486897324946890754583847531L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(19), static_cast(-19.8381298917214997009475636160114041983356824945389L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(20), static_cast(-20.5373329076775663599826814113081017453042180147375L), tolerance); // Table[N[AiryAiZero[n], 51], {n, 1000, 1001, 1}] BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(1000), static_cast(-281.031519612521552835336363963709689055717463965420L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(1001), static_cast(-281.218889579130068414512015874511112547569713693446L), tolerance); // Table[N[AiryAiZero[n], 51], {n, 1000000, 1000001, 1}] BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(1000000), static_cast(-28107.8319793795834876064419863203282898723750036048L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(1000001), static_cast(-28107.8507179357979542838020057465277368471496446555L), tolerance); // Table[N[AiryAiZero[n], 51], {n, 1000000000, 1000000001, 1}] BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(1000000000), static_cast(-2.81078366593344513918947921096193426320298300481145E+6L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_ai_zero(1000000001), static_cast(-2.81078366780730091663459728526906320267920607427246E+6L), tolerance); // Test Data for airy_bi using boost::math::airy_bi_zero; BOOST_MATH_CHECK_THROW(airy_bi_zero(0), std::domain_error); if (std::numeric_limits::has_quiet_NaN) { // return NaN. BOOST_CHECK((boost::math::isnan)(airy_bi_zero(0, ignore_all_policy()))); BOOST_CHECK((boost::math::isnan)(airy_bi_zero((std::numeric_limits::min)() , ignore_all_policy()))); // Can't abuse with NaN as won't compile. // BOOST_MATH_CHECK_THROW(airy_bi_zero(std::numeric_limits::quiet_NaN()), std::domain_error); // cannot convert parameter 1 from 'boost::math::concepts::real_concept' to 'unsigned int'. } else { // real_concept NaN not available, so return zero. BOOST_CHECK_EQUAL(airy_bi_zero(0, ignore_all_policy()), 0); // BOOST_CHECK_EQUAL(airy_bi_zero(-1), 0); // warning C4245: 'argument' : conversion from 'int' to 'unsigned int', signed/unsigned mismatch. // If ignore the warning, interpreted as max unsigned: // check airy_bi_zero(-1) == 0 has failed [-7.42678e+006 != 0] } BOOST_MATH_CHECK_THROW(airy_bi_zero(-1), std::domain_error); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero((std::numeric_limits::max)()), -static_cast(4678579.33229351984573L), tolerance * 300); // Can't abuse with infinity because won't compile - no conversion. //if (std::numeric_limits::has_infinity) //{ // BOOST_CHECK(isnan(airy_bi_zero(std::numeric_limits::infinity)) ); //} // Table[N[AiryBiZero[n], 51], {n, 1, 20, 1}] BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(1), static_cast(-1.17371322270912792491997996247390210454364638917570L), tolerance * 4 * tolerance_tgamma_extra); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(2), static_cast(-3.27109330283635271568022824016641380630093596910028L), tolerance * tolerance_tgamma_extra); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(3), static_cast(-4.83073784166201593266770933990517817696614261732301L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(4), static_cast(-6.16985212831025125983336452055593667996554943427563L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(5), static_cast(-7.37676207936776371359995933044254122209152229939710L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(6), static_cast(-8.49194884650938801344803949280977672860508755505546L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(7), static_cast(-9.53819437934623888663298854515601962083907207638247L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(8), static_cast(-10.5299135067053579244005555984531479995295775946214L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(9), static_cast(-11.4769535512787794379234649247328196719482538148877L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(10), static_cast(-12.3864171385827387455619015028632809482597983846856L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(11), static_cast(-13.2636395229418055541107433243954907752411519609813L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(12), static_cast(-14.1127568090686577915873097822240184716840428285509L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(13), static_cast(-14.9370574121541640402032143104909046396121763517782L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(14), static_cast(-15.7392103511904827708949784797481833807180162767841L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(15), static_cast(-16.5214195506343790539179499652105457167110310370581L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(16), static_cast(-17.2855316245812425329342366922535392425279753602710L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(17), static_cast(-18.0331132872250015721711125433391920008087291416406L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(18), static_cast(-18.7655082844800810413429789236105128440267189551421L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(19), static_cast(-19.4838801329892340136659986592413575122062977793610L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(20), static_cast(-20.1892447853962024202253232258275360764649783583934L), tolerance); // Table[N[AiryBiZero[n], 51], {n, 1000, 1001, 1}] BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(1000), static_cast(-280.937811203415240157883427412260300146245056425646L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(1001), static_cast(-281.125212400956392021977771104562061554648675044114L), tolerance); // Table[N[AiryBiZero[n], 51], {n, 1000000, 1000001, 1}] BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(1000000), static_cast(-28107.8226100991339342855024130953986989636667226163L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(1000001), static_cast(-28107.8413486584714939255315213519230566014624895515L), tolerance); //Table[N[AiryBiZero[n], 51], {n, 1000000000, 1000000001, 1}] BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(1000000000), static_cast(-2.81078366499651725023268820158218492845371527054171E+6L), tolerance); BOOST_CHECK_CLOSE_FRACTION(airy_bi_zero(1000000001), static_cast(-2.81078366687037302799011557215619265502627118526716E+6L), tolerance); // Check the multi-root versions. { unsigned int n_roots = 1U; std::vector roots; boost::math::airy_ai_zero(2U, n_roots, std::back_inserter(roots)); BOOST_CHECK_CLOSE_FRACTION(roots[0], static_cast(-4.08794944413097061663698870145739106022476469910853L), tolerance); } { unsigned int n_roots = 1U; std::vector roots; boost::math::airy_bi_zero(2U, n_roots, std::back_inserter(roots)); BOOST_CHECK_CLOSE_FRACTION(roots[0], static_cast(-3.27109330283635271568022824016641380630093596910028L), tolerance * tolerance_tgamma_extra); } } // template void test_spots(RealType) #include BOOST_AUTO_TEST_CASE(test_main) { test_bessel_zeros(0.1F); test_bessel_zeros(0.1); #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_bessel_zeros(0.1L); #ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS test_bessel_zeros(boost::math::concepts::real_concept(0.1)); #endif #else std::cout << "The long double tests have been disabled on this platform " "either because the long double overloads of the usual math functions are " "not available at all, or because they are too inaccurate for these tests " "to pass." << std::endl; #endif }