// test_arcsine_dist.cpp // Copyright John Maddock 2014. // Copyright Paul A. Bristow 2014. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) // Tests for the arcsine Distribution. #include // Must be 1st include, and include_directory /libs/math/src/tr1/ is needed. #ifdef _MSC_VER # pragma warning(disable: 4127) // Conditional expression is constant. # pragma warning (disable : 4996) // POSIX name for this item is deprecated. # pragma warning (disable : 4224) // Nonstandard extension used : formal parameter 'arg' was previously defined as a type. #endif #include // for real_concept. using ::boost::math::concepts::real_concept; #include // for real_concept. #include // for arcsine_distribution. using boost::math::arcsine_distribution; #include using boost::math::constants::one_div_root_two; #define BOOST_TEST_MAIN #include // for test_main #include // for BOOST_CHECK_CLOSE_FRACTION #include #include "test_out_of_range.hpp" #include using std::cout; using std::endl; #include using std::numeric_limits; template void test_ignore_policy(RealType) { // Check on returns when errors are ignored. if ((typeid(RealType) != typeid(boost::math::concepts::real_concept)) && std::numeric_limits::has_infinity && std::numeric_limits::has_quiet_NaN ) { // Ordinary floats only. using namespace boost::math; // RealType inf = std::numeric_limits::infinity(); RealType nan = std::numeric_limits::quiet_NaN(); using boost::math::policies::policy; // Types of error whose action can be altered by policies:. //using boost::math::policies::evaluation_error; //using boost::math::policies::domain_error; //using boost::math::policies::overflow_error; //using boost::math::policies::underflow_error; //using boost::math::policies::domain_error; //using boost::math::policies::pole_error; //// Actions on error (in enum error_policy_type): //using boost::math::policies::errno_on_error; //using boost::math::policies::ignore_error; //using boost::math::policies::throw_on_error; //using boost::math::policies::denorm_error; //using boost::math::policies::pole_error; //using boost::math::policies::user_error; typedef policy< boost::math::policies::domain_error, boost::math::policies::overflow_error, boost::math::policies::underflow_error, boost::math::policies::denorm_error, boost::math::policies::pole_error, boost::math::policies::evaluation_error > ignore_all_policy; typedef arcsine_distribution ignore_error_arcsine; // Only test NaN and infinity if type has these features (realconcept returns zero). // Integers are always converted to RealType, // others requires static cast to RealType from long double. if (std::numeric_limits::has_quiet_NaN) { // Demonstrate output of PDF with infinity, // but string output from NaN is platform dependent, so can't use BOOST_CHECK. if (std::numeric_limits::has_infinity) { //std::cout << "pdf(ignore_error_arcsine(-1, +1), std::numeric_limits::infinity()) = " << pdf(ignore_error_arcsine(-1, +1), std::numeric_limits::infinity()) << std::endl; // Outputs: pdf(ignore_error_arcsine(-1, +1), std::numeric_limits::infinity()) = 1.#QNAN } BOOST_CHECK((boost::math::isnan)(pdf(ignore_error_arcsine(0, 1), std::numeric_limits::infinity()))); // x == infinity BOOST_CHECK((boost::math::isnan)(pdf(ignore_error_arcsine(-1, 1), std::numeric_limits::infinity()))); // x == infinity BOOST_CHECK((boost::math::isnan)(pdf(ignore_error_arcsine(0, 1), static_cast (-2)))); // x < xmin BOOST_CHECK((boost::math::isnan)(pdf(ignore_error_arcsine(-1, 1), static_cast (-2)))); // x < xmin BOOST_CHECK((boost::math::isnan)(pdf(ignore_error_arcsine(0, 1), static_cast (+2)))); // x > x_max BOOST_CHECK((boost::math::isnan)(pdf(ignore_error_arcsine(-1, 1), static_cast (+2)))); // x > x_max // Mean BOOST_CHECK((boost::math::isnan)(mean(ignore_error_arcsine(-nan, 0)))); BOOST_CHECK((boost::math::isnan)(mean(ignore_error_arcsine(+nan, 0)))); if (std::numeric_limits::has_infinity) { //BOOST_CHECK((boost::math::isnan)(mean(ignore_error_arcsine(-std::numeric_limits::infinity(), 0)))); // std::cout << "arcsine(-inf,+1) mean " << mean(ignore_error_arcsine(-std::numeric_limits::infinity())) << std::endl; //BOOST_CHECK((boost::math::isnan)(mean(ignore_error_arcsine(std::numeric_limits::infinity(), 0)))); } // NaN constructors. BOOST_CHECK((boost::math::isnan)(mean(ignore_error_arcsine(2, nan)))); BOOST_CHECK((boost::math::isnan)(mean(ignore_error_arcsine(nan, nan)))); BOOST_CHECK((boost::math::isnan)(mean(ignore_error_arcsine(nan, 2)))); // Variance BOOST_CHECK((boost::math::isnan)(variance(ignore_error_arcsine(nan, 0)))); BOOST_CHECK((boost::math::isnan)(variance(ignore_error_arcsine(1, nan)))); BOOST_CHECK((boost::math::isnan)(variance(ignore_error_arcsine(2, nan)))); BOOST_CHECK((boost::math::isnan)(variance(ignore_error_arcsine(0, 0)))); BOOST_CHECK((boost::math::isnan)(variance(ignore_error_arcsine(1, 0)))); BOOST_CHECK((boost::math::isnan)(variance(ignore_error_arcsine(static_cast(1.7L), 0)))); BOOST_CHECK((boost::math::isnan)(variance(ignore_error_arcsine(2, 0)))); // Skewness BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_arcsine(nan, 0)))); BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_arcsine(-1, nan)))); BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_arcsine(0, 0)))); BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_arcsine(1, 0)))); BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_arcsine(2, 0)))); BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_arcsine(3, 0)))); // Kurtosis BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_arcsine(nan, 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_arcsine(-1, nan)))); BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_arcsine(0, 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_arcsine(1, 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_arcsine(2, 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_arcsine(static_cast(2.0001L), 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_arcsine(3, 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_arcsine(4, 0)))); // Kurtosis excess BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_arcsine(nan, 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_arcsine(-1, nan)))); BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_arcsine(0, 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_arcsine(1, 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_arcsine(2, 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_arcsine(static_cast(2.0001L), 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_arcsine(3, 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_arcsine(4, 0)))); } // has_quiet_NaN // BOOST_CHECK(boost::math::isfinite(mean(ignore_error_arcsine(0, std::numeric_limits::epsilon())))); check_support >(arcsine_distribution(0, 1)); } // ordinary floats. } // template void test_ignore_policy(RealType) template RealType informax() { //! \return Infinity else max_value. return ((std::numeric_limits::has_infinity) ? std::numeric_limits::infinity() : boost::math::tools::max_value()); } template void test_spot( RealType a, // alpha a or lo or x_min RealType b, // arcsine b or hi or x_maz RealType x, // Probability RealType P, // CDF of arcsine(a, b) RealType Q, // Complement of CDF of arcsine (a, b) RealType tol) // Test tolerance. { boost::math::arcsine_distribution anarcsine(a, b); BOOST_CHECK_CLOSE_FRACTION(cdf(anarcsine, x), P, tol); if ((P < 0.99) && (Q < 0.99)) { // We can only check this if P is not too close to 1, // so that we can guarantee that Q is free of error, // (and similarly for Q). BOOST_CHECK_CLOSE_FRACTION(cdf(complement(anarcsine, x)), Q, tol); if (x != 0) { BOOST_CHECK_CLOSE_FRACTION( quantile(anarcsine, P), x, tol); } else { // Just check quantile is very small: if ((std::numeric_limits::max_exponent <= std::numeric_limits::max_exponent) && (boost::is_floating_point::value)) { // Limit where this is checked: if exponent range is very large we may // run out of iterations in our root finding algorithm. BOOST_CHECK(quantile(anarcsine, P) < boost::math::tools::epsilon() * 10); } } // if k if (x != 0) { BOOST_CHECK_CLOSE_FRACTION(quantile(complement(anarcsine, Q)), x, tol * 10); } else { // Just check quantile is very small: if ((std::numeric_limits::max_exponent <= std::numeric_limits::max_exponent) && (boost::is_floating_point::value)) { // Limit where this is checked: if exponent range is very large we may // run out of iterations in our root finding algorithm. BOOST_CHECK(quantile(complement(anarcsine, Q)) < boost::math::tools::epsilon() * 10); } } // if x } } // template void test_spot template // Any floating-point type RealType. void test_spots(RealType) { // Basic sanity checks with 'known good' values. // so set tolerance to a few eps expressed as a fraction, or // few eps of type double expressed as a fraction, // whichever is the larger. RealType tolerance = (std::max) (boost::math::tools::epsilon(), static_cast(std::numeric_limits::epsilon())); // 0 if real_concept. tolerance *= 2; // Note: NO * 100 because tolerance is a fraction, NOT %. cout << "tolerance = " << tolerance << endl; using boost::math::arcsine_distribution; using ::boost::math::cdf; using ::boost::math::pdf; using ::boost::math::complement; using ::boost::math::quantile; // Basic sanity-check spot values. // Test values from Wolfram alpha, for example: // http://www.wolframalpha.com/input/?i=+N%5BPDF%5Barcsinedistribution%5B0%2C+1%5D%2C+0.5%5D%2C+50%5D // N[PDF[arcsinedistribution[0, 1], 0.5], 50] // 0.63661977236758134307553505349005744813783858296183 arcsine_distribution arcsine_01; // (Our) Standard arcsine. // Member functions. BOOST_CHECK_EQUAL(arcsine_01.x_min(), 0); BOOST_CHECK_EQUAL(arcsine_01.x_max(), 1); // Derived functions. BOOST_CHECK_EQUAL(mean(arcsine_01), 0.5); // 1 / (1 + 1) = 1/2 exactly. BOOST_CHECK_EQUAL(median(arcsine_01), 0.5); // 1 / (1 + 1) = 1/2 exactly. BOOST_CHECK_EQUAL(variance(arcsine_01), 0.125); // 1/8 = 0.125 BOOST_CHECK_CLOSE_FRACTION(standard_deviation(arcsine_01), one_div_root_two() / 2, tolerance); // 1/ sqrt(s) = 0.35355339059327379 BOOST_CHECK_EQUAL(skewness(arcsine_01), 0); // BOOST_CHECK_EQUAL(kurtosis_excess(arcsine_01), -1.5); // 3/2 BOOST_CHECK_EQUAL(support(arcsine_01).first, 0); // BOOST_CHECK_EQUAL(range(arcsine_01).first, 0); // BOOST_MATH_CHECK_THROW(mode(arcsine_01), std::domain_error); // Two modes at x_min and x_max, so throw instead. // PDF // pdf of x = 1/4 is same as reflected value at x = 3/4. // N[PDF[arcsinedistribution[0, 1], 0.25], 50] // N[PDF[arcsinedistribution[0, 1], 0.75], 50] // 0.73510519389572273268176866441729258852984864048885 BOOST_CHECK_CLOSE_FRACTION(pdf(arcsine_01, 0.000001), static_cast(318.31004533885312973989414360099118178698415543136L), tolerance); BOOST_CHECK_CLOSE_FRACTION(pdf(arcsine_01, 0.000005), static_cast(142.35286456604168061345817902422241622116338936911L), tolerance); BOOST_CHECK_CLOSE_FRACTION(pdf(arcsine_01, 0.05), static_cast(1.4605059227421865250256574657088244053723856445614L), tolerance); BOOST_CHECK_CLOSE_FRACTION(pdf(arcsine_01, 0.5), static_cast(0.63661977236758134307553505349005744813783858296183L), tolerance); // Note loss of significance when x is near x_max. BOOST_CHECK_CLOSE_FRACTION(pdf(arcsine_01, 0.95), static_cast(1.4605059227421865250256574657088244053723856445614L), 8 * tolerance); // Less accurate. BOOST_CHECK_CLOSE_FRACTION(pdf(arcsine_01, 0.999995), static_cast(142.35286456604168061345817902422241622116338936911L), 50000 * tolerance); // Much less accurate. BOOST_CHECK_CLOSE_FRACTION(pdf(arcsine_01, 0.999999), static_cast(318.31004533885312973989414360099118178698415543136L), 100000 * tolerance);// Even less accurate. // Extreme x. if (std::numeric_limits::has_infinity) { // BOOST_CHECK_EQUAL(pdf(arcsine_01, 0), informax()); // BOOST_CHECK_EQUAL(pdf(arcsine_01, 1), informax()); // } BOOST_CHECK_CLOSE_FRACTION(pdf(arcsine_01, tolerance), 1 /(sqrt(tolerance) * boost::math::constants::pi()), 2 * tolerance); // BOOST_CHECK_CLOSE_FRACTION(pdf(arcsine_01, static_cast(1) - tolerance), 1 /(sqrt(tolerance) * boost::math::constants::pi()), 2 * tolerance); // // CDF BOOST_CHECK_CLOSE_FRACTION(cdf(arcsine_01, 0.000001), static_cast(0.00063661987847092448418377367957384866092127786060574L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cdf(arcsine_01, 0.000005), static_cast(0.0014235262731079289297302426454125318201831474507326L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cdf(arcsine_01, 0.05), static_cast(0.14356629312870627075094188477505571882161519989741L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cdf(arcsine_01, 0.5), static_cast(0.5L), tolerance); // Exact. BOOST_CHECK_CLOSE_FRACTION(cdf(arcsine_01, 0.95), static_cast(0.85643370687129372924905811522494428117838480010259L), 2 * tolerance); // Values near unity should use the cdf complemented for better accuracy, BOOST_CHECK_CLOSE_FRACTION(cdf(arcsine_01, 0.999995), static_cast(0.99857647372689207107026975735458746817981685254927L), 100 * tolerance); // Less accurate. BOOST_CHECK_CLOSE_FRACTION(cdf(arcsine_01, 0.999999), static_cast(0.99936338012152907551581622632042615133907872213939L), 1000 * tolerance); // Less accurate. // Complement CDF BOOST_CHECK_CLOSE_FRACTION(cdf(complement(arcsine_01, 0.000001)), static_cast(1 - 0.00063661987847092448418377367957384866092127786060574L), 2 * tolerance); BOOST_CHECK_CLOSE_FRACTION(cdf(complement(arcsine_01, 0.000001)), static_cast(0.99936338012152907551581622632043L), 2 * tolerance); // BOOST_CHECK_CLOSE_FRACTION(cdf(complement(arcsine_01, 0.05)), static_cast(0.85643370687129372924905811522494428117838480010259L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cdf(complement(arcsine_01, 0.5)), static_cast(0.5L), tolerance); // Exact. // Some values near unity when complement is expected to be less accurate. BOOST_CHECK_CLOSE_FRACTION(cdf(complement(arcsine_01, 0.95)), static_cast(0.14356629312870627075094188477505571882161519989741L), 8 * tolerance); // 2 for asin BOOST_CHECK_CLOSE_FRACTION(cdf(complement(arcsine_01, 0.999999)), static_cast(1 - 0.99936338012152907551581622632042615133907872213939L), 1000000 * tolerance); // 10000 for asin, 1000000 for acos. // Quantile. // Check 1st, 2nd and 3rd quartiles. BOOST_CHECK_CLOSE_FRACTION(quantile(arcsine_01, static_cast(0.25L)), static_cast(0.14644660940672624L), tolerance); BOOST_CHECK_CLOSE_FRACTION(quantile(arcsine_01, static_cast(0.5L)), 0.5, 2 * tolerance); // probability = 0.5, x = 0.5 BOOST_CHECK_CLOSE_FRACTION(quantile(arcsine_01, static_cast(0.75L)), static_cast(0.85355339059327373L), tolerance); // N[CDF[arcsinedistribution[0, 1], 0.05], 50] == 0.14356629312870627075094188477505571882161519989741 BOOST_CHECK_CLOSE_FRACTION(quantile(arcsine_01, static_cast(0.14356629312870627075094188477505571882161519989741L)), 0.05, tolerance); // Quantile of complement. // N[1-CDF[arcsinedistribution[0, 1], 0.05], 50] == 0.85643370687129372924905811522494428117838480010259 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(arcsine_01, static_cast(0.85643370687129372924905811522494428117838480010259L))), 0.05, tolerance * 2); // N[sin^2[0.75 * pi/2],50] == 0.85355339059327376220042218105242451964241796884424 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(arcsine_01, static_cast(0.25L))), static_cast(0.85355339059327376220042218105242451964241796884424L), tolerance); BOOST_CHECK_CLOSE_FRACTION(quantile(complement(arcsine_01, static_cast(0.5L))), 0.5, 2 * tolerance); // probability = 0.5, x = 0.5 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(arcsine_01, static_cast(0.75L))), static_cast(0.14644660940672623779957781894757548035758203115576L), 2 * tolerance); // Less accurate. // N[CDF[arcsinedistribution[0, 1], 0.25], 5 // 0.33333333333333333333333333333333333333333333333333 BOOST_CHECK_CLOSE_FRACTION(quantile(arcsine_01, static_cast(1) / 3), static_cast(0.25L), 2 * tolerance); BOOST_CHECK_CLOSE_FRACTION(quantile(arcsine_01, static_cast(0.5L)), 0.5, 2 * tolerance); // probability = 0.5, x = 0.5 BOOST_CHECK_CLOSE_FRACTION(quantile(arcsine_01, static_cast(2) / 3), static_cast(0.75L), tolerance); // Arcsine(-1, +1) xmin = -1, x_max = +1 symmetric about zero. arcsine_distribution as_m11(-1, +1); BOOST_CHECK_EQUAL(as_m11.x_min(), -1); // BOOST_CHECK_EQUAL(as_m11.x_max(), +1); BOOST_CHECK_EQUAL(mean(as_m11), 0); // BOOST_CHECK_EQUAL(median(as_m11), 0); // BOOST_CHECK_CLOSE_FRACTION(standard_deviation(as_m11), one_div_root_two(), tolerance * 2); // BOOST_CHECK_EQUAL(variance(as_m11), 0.5); // 1 - (-1) = 2 ^ 2 = 4 /8 = 0.5 BOOST_CHECK_EQUAL(skewness(as_m11), 0); // BOOST_CHECK_EQUAL(kurtosis_excess(as_m11), -1.5); // 3/2 BOOST_CHECK_CLOSE_FRACTION(pdf(as_m11, 0.05), static_cast(0.31870852113797122803869876869296281629727218095644L), tolerance); BOOST_CHECK_CLOSE_FRACTION(pdf(as_m11, 0.5), static_cast(0.36755259694786136634088433220864629426492432024443L), tolerance); BOOST_CHECK_CLOSE_FRACTION(pdf(as_m11, 0.95), static_cast(1.0194074882503562519812229448639426942621591013381L), 2 * tolerance); // Less accurate. BOOST_CHECK_CLOSE_FRACTION(cdf(as_m11, 0.05), static_cast(0.51592213323666034437274347433261364289389772737836L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cdf(as_m11, 0.5), static_cast(0.66666666666666666666666666666666666666666666666667L), 2 * tolerance); BOOST_CHECK_CLOSE_FRACTION(cdf(as_m11, 0.95), static_cast(0.89891737589574013042121018491729701360300248368629L), tolerance); // Not less accurate. // Quantile BOOST_CHECK_CLOSE_FRACTION(quantile(as_m11, static_cast(1) / 3), -static_cast(0.5L), 2 * tolerance); // p = 1/3 x = -0.5 BOOST_CHECK_SMALL(quantile(as_m11, static_cast(0.5L)), 2 * tolerance); // p = 0.5, x = 0 BOOST_CHECK_CLOSE_FRACTION(quantile(as_m11, static_cast(2) / 3), +static_cast(0.5L), 4 * tolerance); // p = 2/3, x = +0.5 // Loop back tests. test_spot( static_cast(0), // lo or a static_cast(1), // hi or b static_cast(0.05), // Random variate x static_cast(0.14356629312870627075094188477505571882161519989741L), // Probability of result (CDF of arcsine), P static_cast(0.85643370687129372924905811522494428117838480010259L), // Complement of CDF Q = 1 - P tolerance); // Test tolerance. test_spot( static_cast(0), // lo or a static_cast(1), // hi or b static_cast(0.95), // Random variate x static_cast(0.85643370687129372924905811522494428117838480010259L), // Probability of result (CDF of arcsine), P static_cast(0.14356629312870627075094188477505571882161519989741L), // Complement of CDF Q = 1 - P tolerance * 4); // Test tolerance (slightly increased compared to x < 0.5 above). test_spot( static_cast(0), // lo or a static_cast(1), // hi or b static_cast(static_cast(0.5L)), // Random variate x static_cast(static_cast(0.5L)), // Probability of result (CDF of arcsine), P static_cast(static_cast(0.5L)), // Complement of CDF Q = 1 - P tolerance * 4); // Test tolerance. // Arcsine(-2, -1) xmin = -2, x_max = -1 - Asymmetric both negative. arcsine_distribution as_m2m1(-2, -1); BOOST_CHECK_EQUAL(as_m2m1.x_min(), -2); // BOOST_CHECK_EQUAL(as_m2m1.x_max(), -1); BOOST_CHECK_EQUAL(mean(as_m2m1), -1.5); // 1 / (1 + 1) = 1/2 exactly. BOOST_CHECK_EQUAL(median(as_m2m1), -1.5); // 1 / (1 + 1) = 1/2 exactly. BOOST_CHECK_EQUAL(variance(as_m2m1), 0.125); BOOST_CHECK_EQUAL(skewness(as_m2m1), 0); // BOOST_CHECK_EQUAL(kurtosis_excess(as_m2m1), -1.5); // 3/2 BOOST_CHECK_CLOSE_FRACTION(pdf(as_m2m1, -1.95), static_cast(1.4605059227421865250256574657088244053723856445614L), 4 * tolerance); BOOST_CHECK_CLOSE_FRACTION(pdf(as_m2m1, -1.5), static_cast(0.63661977236758134307553505349005744813783858296183L), tolerance); BOOST_CHECK_CLOSE_FRACTION(pdf(as_m2m1, -1.05), static_cast(1.4605059227421865250256574657088244053723856445614L), 4 * tolerance); // Less accurate. BOOST_CHECK_CLOSE_FRACTION(cdf(as_m2m1, -1.05), static_cast(0.85643370687129372924905811522494428117838480010259L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cdf(as_m2m1, -1.5), static_cast(0.5L), tolerance); BOOST_CHECK_CLOSE_FRACTION(cdf(as_m2m1, -1.95), static_cast(0.14356629312870627075094188477505571882161519989741L), 8 * tolerance); // Not much less accurate. // Quantile BOOST_CHECK_CLOSE_FRACTION(quantile(as_m2m1, static_cast(0.85643370687129372924905811522494428117838480010259L)), -static_cast(1.05L), 2 * tolerance); // BOOST_CHECK_CLOSE_FRACTION(quantile(as_m2m1, static_cast(0.5L)), -static_cast(1.5L), 2 * tolerance); // BOOST_CHECK_CLOSE_FRACTION(quantile(as_m2m1, static_cast(0.14356629312870627075094188477505571882161519989741L)), -static_cast(1.95L), 4 * tolerance); // BOOST_CHECK_CLOSE_FRACTION(quantile(complement(as_m2m1, static_cast(0.14356629312870627075094188477505571882161519989741L))), -static_cast(1.05L), 2 * tolerance); // BOOST_CHECK_CLOSE_FRACTION(quantile(as_m2m1, static_cast(0.5L)), -static_cast(1.5L), 2 * tolerance); // BOOST_CHECK_CLOSE_FRACTION(quantile(complement(as_m2m1, static_cast(0.85643370687129372924905811522494428117838480010259L))), -static_cast(1.95L), 4 * tolerance); // Tests that should throw: BOOST_MATH_CHECK_THROW(mode(arcsine_distribution(static_cast(0), static_cast(1))), std::domain_error); // mode is undefined, and must throw domain_error! BOOST_MATH_CHECK_THROW( // For various bad arguments. pdf( arcsine_distribution(static_cast(+1), static_cast(-1)), // min_x > max_x static_cast(1)), std::domain_error); BOOST_MATH_CHECK_THROW( pdf( arcsine_distribution(static_cast(1), static_cast(0)), // bad constructor parameters. static_cast(1)), std::domain_error); BOOST_MATH_CHECK_THROW( pdf( arcsine_distribution(static_cast(1), static_cast(-1)), // bad constructor parameters. static_cast(1)), std::domain_error); BOOST_MATH_CHECK_THROW( pdf( arcsine_distribution(static_cast(1), static_cast(1)), // equal constructor parameters. static_cast(-1)), std::domain_error); BOOST_MATH_CHECK_THROW( pdf( arcsine_distribution(static_cast(0), static_cast(1)), // bad x > 1. static_cast(999)), std::domain_error); // Checks on things that are errors. // Construction with 'bad' parameters. BOOST_MATH_CHECK_THROW(arcsine_distribution(+1, -1), std::domain_error); // max < min. BOOST_MATH_CHECK_THROW(arcsine_distribution(+1, 0), std::domain_error); // max < min. arcsine_distribution<> dist; BOOST_MATH_CHECK_THROW(pdf(dist, -1), std::domain_error); BOOST_MATH_CHECK_THROW(cdf(dist, -1), std::domain_error); BOOST_MATH_CHECK_THROW(cdf(complement(dist, -1)), std::domain_error); BOOST_MATH_CHECK_THROW(quantile(dist, -1), std::domain_error); BOOST_MATH_CHECK_THROW(quantile(complement(dist, -1)), std::domain_error); BOOST_MATH_CHECK_THROW(quantile(dist, -1), std::domain_error); BOOST_MATH_CHECK_THROW(quantile(complement(dist, -1)), std::domain_error); // Various combinations of bad constructor and member function parameters. BOOST_MATH_CHECK_THROW(pdf(boost::math::arcsine_distribution(0, 1), -1), std::domain_error); BOOST_MATH_CHECK_THROW(pdf(boost::math::arcsine_distribution(-1, 1), +2), std::domain_error); BOOST_MATH_CHECK_THROW(quantile(boost::math::arcsine_distribution(1, 1), -1), std::domain_error); BOOST_MATH_CHECK_THROW(quantile(boost::math::arcsine_distribution(1, 1), 2), std::domain_error); // No longer allow any parameter to be NaN or inf, so all these tests should throw. if (std::numeric_limits::has_quiet_NaN) { // Attempt to construct from non-finite parameters should throw. RealType nan = std::numeric_limits::quiet_NaN(); #ifndef BOOST_NO_EXCEPTIONS BOOST_MATH_CHECK_THROW(arcsine_distribution w(nan), std::domain_error); BOOST_MATH_CHECK_THROW(arcsine_distribution w(1, nan), std::domain_error); BOOST_MATH_CHECK_THROW(arcsine_distribution w(nan, 1), std::domain_error); #else BOOST_MATH_CHECK_THROW(arcsine_distribution(nan), std::domain_error); BOOST_MATH_CHECK_THROW(arcsine_distribution(1, nan), std::domain_error); BOOST_MATH_CHECK_THROW(arcsine_distribution(nan, 1), std::domain_error); #endif arcsine_distribution w(RealType(-1), RealType(+1)); // NaN parameters to member functions should throw. BOOST_MATH_CHECK_THROW(pdf(w, +nan), std::domain_error); // x = NaN BOOST_MATH_CHECK_THROW(cdf(w, +nan), std::domain_error); // x = NaN BOOST_MATH_CHECK_THROW(cdf(complement(w, +nan)), std::domain_error); // x = + nan BOOST_MATH_CHECK_THROW(quantile(w, +nan), std::domain_error); // p = + nan BOOST_MATH_CHECK_THROW(quantile(complement(w, +nan)), std::domain_error); // p = + nan } // has_quiet_NaN if (std::numeric_limits::has_infinity) { // Attempt to construct from non-finite should throw. RealType inf = std::numeric_limits::infinity(); #ifndef BOOST_NO_EXCEPTIONS BOOST_MATH_CHECK_THROW(arcsine_distribution w(inf), std::domain_error); BOOST_MATH_CHECK_THROW(arcsine_distribution w(1, inf), std::domain_error); #else BOOST_MATH_CHECK_THROW(arcsine_distribution(inf), std::domain_error); BOOST_MATH_CHECK_THROW(arcsine_distribution(1, inf), std::domain_error); #endif // Infinite parameters to member functions should throw. arcsine_distribution w(RealType(0), RealType(1)); #ifndef BOOST_NO_EXCEPTIONS BOOST_MATH_CHECK_THROW(arcsine_distribution w(inf), std::domain_error); BOOST_MATH_CHECK_THROW(arcsine_distribution w(1, inf), std::domain_error); #else BOOST_MATH_CHECK_THROW(arcsine_distribution(inf), std::domain_error); BOOST_MATH_CHECK_THROW(arcsine_distribution(1, inf), std::domain_error); #endif BOOST_MATH_CHECK_THROW(pdf(w, +inf), std::domain_error); // x = inf BOOST_MATH_CHECK_THROW(cdf(w, +inf), std::domain_error); // x = inf BOOST_MATH_CHECK_THROW(cdf(complement(w, +inf)), std::domain_error); // x = + inf BOOST_MATH_CHECK_THROW(quantile(w, +inf), std::domain_error); // p = + inf BOOST_MATH_CHECK_THROW(quantile(complement(w, +inf)), std::domain_error); // p = + inf } // has_infinity // Error handling checks: check_out_of_range >(-1, +1); // (All) valid constructor parameter values. // and range and non-finite. test_ignore_policy(static_cast(0)); } // template void test_spots(RealType) BOOST_AUTO_TEST_CASE(test_main) { BOOST_MATH_CONTROL_FP; // Check that can generate arcsine distribution using convenience method: using boost::math::arcsine; arcsine_distribution<> arcsine_01; // Using default RealType double. // Note: NOT arcsine01() - or compiler will assume a function. arcsine as; // Using typedef for default standard arcsine. // BOOST_CHECK_EQUAL(as.x_min(), 0); // BOOST_CHECK_EQUAL(as.x_max(), 1); BOOST_CHECK_EQUAL(mean(as), 0.5); // 1 / (1 + 1) = 1/2 exactly. BOOST_CHECK_EQUAL(median(as), 0.5); // 1 / (1 + 1) = 1/2 exactly. BOOST_CHECK_EQUAL(variance(as), 0.125); //0.125 BOOST_CHECK_CLOSE_FRACTION(standard_deviation(as), one_div_root_two() / 2, std::numeric_limits::epsilon()); // 0.353553 BOOST_CHECK_EQUAL(skewness(as), 0); // BOOST_CHECK_EQUAL(kurtosis_excess(as), -1.5); // 3/2 BOOST_CHECK_EQUAL(support(as).first, 0); // BOOST_CHECK_EQUAL(range(as).first, 0); // BOOST_MATH_CHECK_THROW(mode(as), std::domain_error); // Two modes at x_min and x_max, so throw instead. // (Parameter value, arbitrarily zero, only communicates the floating point type). test_spots(0.0F); // Test float. test_spots(0.0); // Test double. #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_spots(0.0L); // Test long double. #if !BOOST_WORKAROUND(BOOST_BORLANDC, BOOST_TESTED_AT(0x582)) test_spots(boost::math::concepts::real_concept(0.)); // Test real concept. #endif #endif /* */ } // BOOST_AUTO_TEST_CASE( test_main ) /* Microsoft Visual Studio Professional 2013 Version 12.0.30110.00 Update 1 1> Description: Autorun "J:\Cpp\MathToolkit\test\Math_test\Debug\test_arcsine.exe" 1> Running 1 test case... 1> Platform: Win32 1> Compiler: Microsoft Visual C++ version 12.0 ???? MSVC says 2013 1> STL : Dinkumware standard library version 610 1> Boost : 1.56.0 Sample Output is: 1> Description: Autorun "J:\Cpp\MathToolkit\test\Math_test\Debug\test_arcsine.exe" 1> Running 1 test case... 1> Platform: Win32 1> Compiler: Microsoft Visual C++ version 12.0 1> STL : Dinkumware standard library version 610 1> Boost : 1.56.0 1> tolerance = 2.38419e-007 1> tolerance = 4.44089e-016 1> tolerance = 4.44089e-016 1> tolerance = 4.44089e-016 1> 1> *** No errors detected GCC 4.9.1 Running 1 test case... tolerance = 2.38419e-007 tolerance = 4.44089e-016 tolerance = 4.44089e-016 tolerance = 4.44089e-016 *** No errors detected RUN SUCCESSFUL (total time: 141ms) */