// Copyright Paul A. Bristow 2015. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) // Note that this file contains Quickbook mark-up as well as code // and comments, don't change any of the special comment mark-ups! // Example of root finding using Boost.Multiprecision. #include //using boost::math::policies::policy; //using boost::math::tools::newton_raphson_iterate; //using boost::math::tools::halley_iterate; //using boost::math::tools::eps_tolerance; // Binary functor for specified number of bits. //using boost::math::tools::bracket_and_solve_root; //using boost::math::tools::toms748_solve; #include // For float_distance. #include #include //[root_finding_multiprecision_include_1 #include // For cpp_bin_float_50. #include // For cpp_dec_float_50. #ifndef _MSC_VER // float128 is not yet supported by Microsoft compiler at 2013. # include // Requires libquadmath. #endif //] [/root_finding_multiprecision_include_1] #include // using std::cout; using std::endl; #include // using std::setw; using std::setprecision; #include // using std::numeric_limits; #include #include // pair, make_pair // #define BUILTIN_POW_GUESS // define to use std::pow function to obtain a guess. template T cbrt_2deriv(T x) { // return cube root of x using 1st and 2nd derivatives and Halley. using namespace std; // Help ADL of std functions. using namespace boost::math::tools; // For halley_iterate. // If T is not a binary floating-point type, for example, cpp_dec_float_50 // then frexp may not be defined, // so it may be necessary to compute the guess using a built-in type, // probably quickest using double, but perhaps with float or long double. // Note that the range of exponent may be restricted by a built-in-type for guess. typedef long double guess_type; #ifdef BUILTIN_POW_GUESS guess_type pow_guess = std::pow(static_cast(x), static_cast(1) / 3); T guess = pow_guess; T min = pow_guess /2; T max = pow_guess * 2; #else int exponent; frexp(static_cast(x), &exponent); // Get exponent of z (ignore mantissa). T guess = ldexp(static_cast(1.), exponent / 3); // Rough guess is to divide the exponent by three. T min = ldexp(static_cast(1.) / 2, exponent / 3); // Minimum possible value is half our guess. T max = ldexp(static_cast(2.), exponent / 3); // Maximum possible value is twice our guess. #endif int digits = std::numeric_limits::digits / 2; // Half maximum possible binary digits accuracy for type T. const boost::uintmax_t maxit = 20; boost::uintmax_t it = maxit; T result = halley_iterate(cbrt_functor_2deriv(x), guess, min, max, digits, it); // Can show how many iterations (updated by halley_iterate). // std::cout << "Iterations " << it << " (from max of "<< maxit << ")." << std::endl; return result; } // cbrt_2deriv(x) template struct cbrt_functor_2deriv { // Functor returning both 1st and 2nd derivatives. cbrt_functor_2deriv(T const& to_find_root_of) : a(to_find_root_of) { // Constructor stores value to find root of, for example: } // using boost::math::tuple; // to return three values. std::tuple operator()(T const& x) { // Return both f(x) and f'(x) and f''(x). T fx = x*x*x - a; // Difference (estimate x^3 - value). // std::cout << "x = " << x << "\nfx = " << fx << std::endl; T dx = 3 * x*x; // 1st derivative = 3x^2. T d2x = 6 * x; // 2nd derivative = 6x. return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x. } private: T a; // to be 'cube_rooted'. }; // struct cbrt_functor_2deriv template struct nth_functor_2deriv { // Functor returning both 1st and 2nd derivatives. nth_functor_2deriv(T const& to_find_root_of) : value(to_find_root_of) { /* Constructor stores value to find root of, for example: */ } // using std::tuple; // to return three values. std::tuple operator()(T const& x) { // Return both f(x) and f'(x) and f''(x). using boost::math::pow; T fx = pow(x) - value; // Difference (estimate x^3 - value). T dx = n * pow(x); // 1st derivative = 5x^4. T d2x = n * (n - 1) * pow(x); // 2nd derivative = 20 x^3 return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x. } private: T value; // to be 'nth_rooted'. }; // struct nth_functor_2deriv template T nth_2deriv(T x) { // return nth root of x using 1st and 2nd derivatives and Halley. using namespace std; // Help ADL of std functions. using namespace boost::math; // For halley_iterate. int exponent; frexp(x, &exponent); // Get exponent of z (ignore mantissa). T guess = ldexp(static_cast(1.), exponent / n); // Rough guess is to divide the exponent by three. T min = ldexp(static_cast(0.5), exponent / n); // Minimum possible value is half our guess. T max = ldexp(static_cast(2.), exponent / n); // Maximum possible value is twice our guess. int digits = std::numeric_limits::digits / 2; // Half maximum possible binary digits accuracy for type T. const boost::uintmax_t maxit = 50; boost::uintmax_t it = maxit; T result = halley_iterate(nth_functor_2deriv(x), guess, min, max, digits, it); // Can show how many iterations (updated by halley_iterate). std::cout << it << " iterations (from max of " << maxit << ")" << std::endl; return result; } // nth_2deriv(x) //[root_finding_multiprecision_show_1 template T show_cube_root(T value) { // Demonstrate by printing the root using all definitely significant digits. std::cout.precision(std::numeric_limits::digits10); T r = cbrt_2deriv(value); std::cout << "value = " << value << ", cube root =" << r << std::endl; return r; } //] [/root_finding_multiprecision_show_1] int main() { std::cout << "Multiprecision Root finding Example." << std::endl; // Show all possibly significant decimal digits. std::cout.precision(std::numeric_limits::digits10); // or use cout.precision(max_digits10 = 2 + std::numeric_limits::digits * 3010/10000); //[root_finding_multiprecision_example_1 using boost::multiprecision::cpp_dec_float_50; // decimal. using boost::multiprecision::cpp_bin_float_50; // binary. #ifndef _MSC_VER // Not supported by Microsoft compiler. using boost::multiprecision::float128; #endif //] [/root_finding_multiprecision_example_1 try { // Always use try'n'catch blocks with Boost.Math to get any error messages. // Increase the precision to 50 decimal digits using Boost.Multiprecision //[root_finding_multiprecision_example_2 std::cout.precision(std::numeric_limits::digits10); cpp_dec_float_50 two = 2; // cpp_dec_float_50 r = cbrt_2deriv(two); std::cout << "cbrt(" << two << ") = " << r << std::endl; r = cbrt_2deriv(2.); // Passing a double, so ADL will compute a double precision result. std::cout << "cbrt(" << two << ") = " << r << std::endl; // cbrt(2) = 1.2599210498948731906665443602832965552806854248047 'wrong' from digits 17 onwards! r = cbrt_2deriv(static_cast(2.)); // Passing a cpp_dec_float_50, // so will compute a cpp_dec_float_50 precision result. std::cout << "cbrt(" << two << ") = " << r << std::endl; r = cbrt_2deriv(2.); // Explicitly a cpp_dec_float_50, so will compute a cpp_dec_float_50 precision result. std::cout << "cbrt(" << two << ") = " << r << std::endl; // cpp_dec_float_50 1.2599210498948731647672106072782283505702514647015 //] [/root_finding_multiprecision_example_2 // N[2^(1/3), 50] 1.2599210498948731647672106072782283505702514647015 //show_cube_root(2); // Integer parameter - Errors! //show_cube_root(2.F); // Float parameter - Warnings! //[root_finding_multiprecision_example_3 show_cube_root(2.); show_cube_root(2.L); show_cube_root(two); //] [/root_finding_multiprecision_example_3 } catch (const std::exception& e) { // Always useful to include try&catch blocks because default policies // are to throw exceptions on arguments that cause errors like underflow & overflow. // Lacking try&catch blocks, the program will abort without a message below, // which may give some helpful clues as to the cause of the exception. std::cout << "\n""Message from thrown exception was:\n " << e.what() << std::endl; } return 0; } // int main() /* Description: Autorun "J:\Cpp\MathToolkit\test\Math_test\Release\root_finding_multiprecision.exe" Multiprecision Root finding Example. cbrt(2) = 1.2599210498948731647672106072782283505702514647015 cbrt(2) = 1.2599210498948731906665443602832965552806854248047 cbrt(2) = 1.2599210498948731647672106072782283505702514647015 cbrt(2) = 1.2599210498948731647672106072782283505702514647015 value = 2, cube root =1.25992104989487 value = 2, cube root =1.25992104989487 value = 2, cube root =1.2599210498948731647672106072782283505702514647015 */