// negative_binomial_example2.cpp // Copyright Paul A. Bristow 2007, 2010. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) // Simple example demonstrating use of the Negative Binomial Distribution. #include using boost::math::negative_binomial_distribution; using boost::math::negative_binomial; // typedef // In a sequence of trials or events // (Bernoulli, independent, yes or no, succeed or fail) // with success_fraction probability p, // negative_binomial is the probability that k or fewer failures // precede the r th trial's success. #include using std::cout; using std::endl; using std::setprecision; using std::showpoint; using std::setw; using std::left; using std::right; #include using std::numeric_limits; int main() { cout << "Negative_binomial distribution - simple example 2" << endl; // Construct a negative binomial distribution with: // 8 successes (r), success fraction (p) 0.25 = 25% or 1 in 4 successes. negative_binomial mynbdist(8, 0.25); // Shorter method using typedef. // Display (to check) properties of the distribution just constructed. cout << "mean(mynbdist) = " << mean(mynbdist) << endl; // 24 cout << "mynbdist.successes() = " << mynbdist.successes() << endl; // 8 // r th successful trial, after k failures, is r + k th trial. cout << "mynbdist.success_fraction() = " << mynbdist.success_fraction() << endl; // success_fraction = failures/successes or k/r = 0.25 or 25%. cout << "mynbdist.percent success = " << mynbdist.success_fraction() * 100 << "%" << endl; // Show as % too. // Show some cumulative distribution function values for failures k = 2 and 8 cout << "cdf(mynbdist, 2.) = " << cdf(mynbdist, 2.) << endl; // 0.000415802001953125 cout << "cdf(mynbdist, 8.) = " << cdf(mynbdist, 8.) << endl; // 0.027129956288263202 cout << "cdf(complement(mynbdist, 8.)) = " << cdf(complement(mynbdist, 8.)) << endl; // 0.9728700437117368 // Check that cdf plus its complement is unity. cout << "cdf + complement = " << cdf(mynbdist, 8.) + cdf(complement(mynbdist, 8.)) << endl; // 1 // Note: No complement for pdf! // Compare cdf with sum of pdfs. double sum = 0.; // Calculate the sum of all the pdfs, int k = 20; // for 20 failures for(signed i = 0; i <= k; ++i) { sum += pdf(mynbdist, double(i)); } // Compare with the cdf double cdf8 = cdf(mynbdist, static_cast(k)); double diff = sum - cdf8; // Expect the difference to be very small. cout << setprecision(17) << "Sum pdfs = " << sum << ' ' // sum = 0.40025683281803698 << ", cdf = " << cdf(mynbdist, static_cast(k)) // cdf = 0.40025683281803687 << ", difference = " // difference = 0.50000000000000000 << setprecision(1) << diff/ (std::numeric_limits::epsilon() * sum) << " in epsilon units." << endl; // Note: Use boost::math::tools::epsilon rather than std::numeric_limits // to cover RealTypes that do not specialize numeric_limits. //[neg_binomial_example2 // Print a table of values that can be used to plot // using Excel, or some other superior graphical display tool. cout.precision(17); // Use max_digits10 precision, the maximum available for a reference table. cout << showpoint << endl; // include trailing zeros. // This is a maximum possible precision for the type (here double) to suit a reference table. int maxk = static_cast(2. * mynbdist.successes() / mynbdist.success_fraction()); // This maxk shows most of the range of interest, probability about 0.0001 to 0.999. cout << "\n"" k pdf cdf""\n" << endl; for (int k = 0; k < maxk; k++) { cout << right << setprecision(17) << showpoint << right << setw(3) << k << ", " << left << setw(25) << pdf(mynbdist, static_cast(k)) << left << setw(25) << cdf(mynbdist, static_cast(k)) << endl; } cout << endl; //] [/ neg_binomial_example2] return 0; } // int main() /* Output is: negative_binomial distribution - simple example 2 mean(mynbdist) = 24 mynbdist.successes() = 8 mynbdist.success_fraction() = 0.25 mynbdist.percent success = 25% cdf(mynbdist, 2.) = 0.000415802001953125 cdf(mynbdist, 8.) = 0.027129956288263202 cdf(complement(mynbdist, 8.)) = 0.9728700437117368 cdf + complement = 1 Sum pdfs = 0.40025683281803692 , cdf = 0.40025683281803687, difference = 0.25 in epsilon units. //[neg_binomial_example2_1 k pdf cdf 0, 1.5258789062500000e-005 1.5258789062500003e-005 1, 9.1552734375000000e-005 0.00010681152343750000 2, 0.00030899047851562522 0.00041580200195312500 3, 0.00077247619628906272 0.0011882781982421875 4, 0.0015932321548461918 0.0027815103530883789 5, 0.0028678178787231476 0.0056493282318115234 6, 0.0046602040529251142 0.010309532284736633 7, 0.0069903060793876605 0.017299838364124298 8, 0.0098301179241389001 0.027129956288263202 9, 0.013106823898851871 0.040236780187115073 10, 0.016711200471036140 0.056947980658151209 11, 0.020509200578089786 0.077457181236241013 12, 0.024354675686481652 0.10181185692272265 13, 0.028101548869017230 0.12991340579173993 14, 0.031614242477644432 0.16152764826938440 15, 0.034775666725408917 0.19630331499479325 16, 0.037492515688331451 0.23379583068312471 17, 0.039697957787645101 0.27349378847076977 18, 0.041352039362130305 0.31484582783290005 19, 0.042440250924291580 0.35728607875719176 20, 0.042970754060845245 0.40025683281803687 21, 0.042970754060845225 0.44322758687888220 22, 0.042482450037426581 0.48571003691630876 23, 0.041558918514873783 0.52726895543118257 24, 0.040260202311284021 0.56752915774246648 25, 0.038649794218832620 0.60617895196129912 26, 0.036791631035234917 0.64297058299653398 27, 0.034747651533277427 0.67771823452981139 28, 0.032575923312447595 0.71029415784225891 29, 0.030329307911589130 0.74062346575384819 30, 0.028054609818219924 0.76867807557206813 31, 0.025792141284492545 0.79447021685656061 32, 0.023575629142856460 0.81804584599941710 33, 0.021432390129869489 0.83947823612928651 34, 0.019383705779220189 0.85886194190850684 35, 0.017445335201298231 0.87630727710980494 36, 0.015628112784496322 0.89193538989430121 37, 0.013938587078064250 0.90587397697236549 38, 0.012379666154859701 0.91825364312722524 39, 0.010951243136991251 0.92920488626421649 40, 0.0096507830144735539 0.93885566927869002 41, 0.0084738582566109364 0.94732952753530097 42, 0.0074146259745345548 0.95474415350983555 43, 0.0064662435824429246 0.96121039709227851 44, 0.0056212231142827853 0.96683162020656122 45, 0.0048717266990450708 0.97170334690560634 46, 0.0042098073105878630 0.97591315421619418 47, 0.0036275999165703964 0.97954075413276465 48, 0.0031174686783026818 0.98265822281106729 49, 0.0026721160099737302 0.98533033882104104 50, 0.0022846591885275322 0.98761499800956853 51, 0.0019486798960970148 0.98956367790566557 52, 0.0016582516423517923 0.99122192954801736 53, 0.0014079495076571762 0.99262987905567457 54, 0.0011928461106539983 0.99382272516632852 55, 0.0010084971662802015 0.99483122233260868 56, 0.00085091948404891532 0.99568214181665760 57, 0.00071656377604119542 0.99639870559269883 58, 0.00060228420831048650 0.99700098980100937 59, 0.00050530624256557675 0.99750629604357488 60, 0.00042319397814867202 0.99792949002172360 61, 0.00035381791615708398 0.99828330793788067 62, 0.00029532382517950324 0.99857863176306016 63, 0.00024610318764958566 0.99882473495070978 //] [neg_binomial_example2_1 end of Quickbook] */