// Copyright Nick Thompson, 2017 // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or // copy at http://www.boost.org/LICENSE_1_0.txt). #include #include #include //[barycentric_rational_example2 /*`This further example shows how to use the iterator based constructor, and then uses the function object in our root finding algorithms to locate the points where the potential achieves a specific value. */ #include #include #include int main() { // The lithium potential is given in Kohn's paper, Table I. // (We could equally easily use an unordered_map, a list of tuples or pairs, or a 2-dimensional array). std::map r; r[0.02] = 5.727; r[0.04] = 5.544; r[0.06] = 5.450; r[0.08] = 5.351; r[0.10] = 5.253; r[0.12] = 5.157; r[0.14] = 5.058; r[0.16] = 4.960; r[0.18] = 4.862; r[0.20] = 4.762; r[0.24] = 4.563; r[0.28] = 4.360; r[0.32] = 4.1584; r[0.36] = 3.9463; r[0.40] = 3.7360; r[0.44] = 3.5429; r[0.48] = 3.3797; r[0.52] = 3.2417; r[0.56] = 3.1209; r[0.60] = 3.0138; r[0.68] = 2.8342; r[0.76] = 2.6881; r[0.84] = 2.5662; r[0.92] = 2.4242; r[1.00] = 2.3766; r[1.08] = 2.3058; r[1.16] = 2.2458; r[1.24] = 2.2035; r[1.32] = 2.1661; r[1.40] = 2.1350; r[1.48] = 2.1090; r[1.64] = 2.0697; r[1.80] = 2.0466; r[1.96] = 2.0325; r[2.12] = 2.0288; r[2.28] = 2.0292; r[2.44] = 2.0228; r[2.60] = 2.0124; r[2.76] = 2.0065; r[2.92] = 2.0031; r[3.08] = 2.0015; r[3.24] = 2.0008; r[3.40] = 2.0004; r[3.56] = 2.0002; r[3.72] = 2.0001; // Let's discover the absissa that will generate a potential of exactly 3.0, // start by creating 2 ranges for the x and y values: auto x_range = boost::adaptors::keys(r); auto y_range = boost::adaptors::values(r); boost::math::barycentric_rational b(x_range.begin(), x_range.end(), y_range.begin()); // // We'll use a lambda expression to provide the functor to our root finder, since we want // the abscissa value that yields 3, not zero. We pass the functor b by value to the // lambda expression since barycentric_rational is trivial to copy. // Here we're using simple bisection to find the root: boost::uintmax_t iterations = (std::numeric_limits::max)(); double abscissa_3 = boost::math::tools::bisect([=](double x) { return b(x) - 3; }, 0.44, 1.24, boost::math::tools::eps_tolerance(), iterations).first; std::cout << "Abscissa value that yields a potential of 3 = " << abscissa_3 << std::endl; std::cout << "Root was found in " << iterations << " iterations." << std::endl; // // However, we have a more efficient root finding algorithm than simple bisection: iterations = (std::numeric_limits::max)(); abscissa_3 = boost::math::tools::bracket_and_solve_root([=](double x) { return b(x) - 3; }, 0.6, 1.2, false, boost::math::tools::eps_tolerance(), iterations).first; std::cout << "Abscissa value that yields a potential of 3 = " << abscissa_3 << std::endl; std::cout << "Root was found in " << iterations << " iterations." << std::endl; } //] [/barycentric_rational_example2] //[barycentric_rational_example2_out /*` Program output is: [pre Abscissa value that yields a potential of 3 = 0.604728 Root was found in 54 iterations. Abscissa value that yields a potential of 3 = 0.604728 Root was found in 10 iterations. ] */ //]