[DEV] add v1.76.0

This commit is contained in:
2021-10-05 21:37:46 +02:00
parent a97e9ae7d4
commit d0115b733d
45133 changed files with 4744437 additions and 1026325 deletions

View File

@@ -1,12 +1,12 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Overview</title>
<link rel="stylesheet" href="../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../index.html" title="Math Toolkit 2.6.0">
<link rel="up" href="../quaternions.html" title="Chapter&#160;13.&#160;Quaternions">
<link rel="prev" href="../quaternions.html" title="Chapter&#160;13.&#160;Quaternions">
<link rel="home" href="../index.html" title="Math Toolkit 3.0.0">
<link rel="up" href="../quaternions.html" title="Chapter 16. Quaternions">
<link rel="prev" href="../quaternions.html" title="Chapter 16. Quaternions">
<link rel="next" href="quat_header.html" title="Header File">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
@@ -51,8 +51,8 @@
(the usual three-dimensional space) and <span class="emphasis"><em><span class="bold"><strong>R<sup>4</sup></strong></span></em></span>.
</p>
<p>
In practical terms, a quaternion is simply a quadruple of real numbers (&#945;,&#946;,&#947;,&#948;),
which we can write in the form <span class="emphasis"><em><code class="literal">q = &#945; + &#946;i + &#947;j + &#948;k</code></em></span>,
In practical terms, a quaternion is simply a quadruple of real numbers (α,β,γ),
which we can write in the form <span class="emphasis"><em><code class="literal">q = α + βi + γj + δk</code></em></span>,
where <span class="emphasis"><em><code class="literal">i</code></em></span> is the same object as for complex
numbers, and <span class="emphasis"><em><code class="literal">j</code></em></span> and <span class="emphasis"><em><code class="literal">k</code></em></span>
are distinct objects which play essentially the same kind of role as <span class="emphasis"><em><code class="literal">i</code></em></span>.
@@ -62,7 +62,7 @@
generalize their real and complex counterparts. The main novelty here is that
<span class="bold"><strong>the multiplication is not commutative</strong></span> (i.e.
there are quaternions <span class="emphasis"><em><code class="literal">x</code></em></span> and <span class="emphasis"><em><code class="literal">y</code></em></span>
such that <span class="emphasis"><em><code class="literal">xy &#8800; yx</code></em></span>). A good mnemotechnical
such that <span class="emphasis"><em><code class="literal">xy yx</code></em></span>). A good mnemotechnical
way of remembering things is by using the formula <span class="emphasis"><em><code class="literal">i*i =
j*j = k*k = -1</code></em></span>.
</p>
@@ -79,11 +79,11 @@
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2010, 2012-2014, 2017 Nikhar
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Johan R&#229;de, Gautam
Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle Walker
and Xiaogang Zhang<p>
<td align="right"><div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>