[DEV] add v1.76.0

This commit is contained in:
2021-10-05 21:37:46 +02:00
parent a97e9ae7d4
commit d0115b733d
45133 changed files with 4744437 additions and 1026325 deletions

View File

@@ -1,10 +1,10 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>atanh</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../../index.html" title="Math Toolkit 2.6.0">
<link rel="home" href="../../index.html" title="Math Toolkit 3.0.0">
<link rel="up" href="../inv_hyper.html" title="Inverse Hyperbolic Functions">
<link rel="prev" href="asinh.html" title="asinh">
<link rel="next" href="../owens_t.html" title="Owen's T function">
@@ -31,46 +31,48 @@
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">atanh</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">T</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">atanh</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">T</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
<span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">atanh</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">T</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
</pre>
<p>
Computes the reciprocal of <a class="link" href="inv_hyper_over.html" title="Inverse Hyperbolic Functions Overview">the
hyperbolic tangent function</a>, at x.
</p>
<p>
The final <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
The final <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
be used to control the behaviour of the function: how it handles errors,
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">policy
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">policy
documentation for more details</a>.
</p>
<p>
If x is in the range <code class="literal">]-&#8734;;-1[</code> or in the range <code class="literal">]+1;+&#8734;[</code>
If x is in the range <code class="literal">]-;-1[</code> or in the range <code class="literal">]+1;+[</code>
then returns the result of <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>.
</p>
<p>
If x is in the range <code class="literal">[-1;-1+&#949;[</code>, then the result of -<a class="link" href="../error_handling.html#math_toolkit.error_handling.overflow_error">overflow_error</a>
is returned, with &#949; &#160;
denoting numeric_limits&lt;T&gt;::epsilon().
If x is in the range <code class="literal">[-1;-1+ε[</code>, then the result of -<a class="link" href="../error_handling.html#math_toolkit.error_handling.overflow_error">overflow_error</a>
is returned, with ε
denoting <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">epsilon</span><span class="special">()</span></code>.
</p>
<p>
If x is in the range <code class="literal">]+1-&#949;;+1]</code>, then the result of <a class="link" href="../error_handling.html#math_toolkit.error_handling.overflow_error">overflow_error</a>
is returned, with &#949; &#160;
denoting numeric_limits&lt;T&gt;::epsilon().
If x is in the range <code class="literal">]+1-ε;+1]</code>, then the result of <a class="link" href="../error_handling.html#math_toolkit.error_handling.overflow_error">overflow_error</a>
is returned, with ε
denoting <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">epsilon</span><span class="special">()</span></code>.
</p>
<p>
The return type of this function is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
type calculation rules</em></span></a>: the return type is <code class="computeroutput"><span class="keyword">double</span></code> when T is an integer type, and T otherwise.
</p>
<p>
<span class="inlinemediaobject"><img src="../../../graphs/atanh.svg" align="middle"></span>
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../graphs/atanh.svg" align="middle"></span>
</p></blockquote></div>
<h5>
<a name="math_toolkit.inv_hyper.atanh.h0"></a>
<span class="phrase"><a name="math_toolkit.inv_hyper.atanh.accuracy"></a></span><a class="link" href="atanh.html#math_toolkit.inv_hyper.atanh.accuracy">Accuracy</a>
</h5>
<p>
Generally accuracy is to within 1 or 2 epsilon across all supported platforms.
Generally accuracy is to within 1 or 2 <a href="http://en.wikipedia.org/wiki/Machine_epsilon" target="_top">machine
epsilon</a> across all supported platforms.
</p>
<h5>
<a name="math_toolkit.inv_hyper.atanh.h1"></a>
@@ -81,9 +83,10 @@ denoting numeric_limits&lt;T&gt;::epsilon().
to give full function coverage computed at high precision using the "naive"
formula:
</p>
<p>
<span class="inlinemediaobject"><img src="../../../equations/atanh1.svg"></span>
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/atanh1.svg"></span>
</p></blockquote></div>
<p>
along with a selection of sanity check values computed using functions.wolfram.com
to at least 50 decimal digits.
@@ -95,33 +98,36 @@ denoting numeric_limits&lt;T&gt;::epsilon().
<p>
For sufficiently small x we can use the <a href="http://functions.wolfram.com/ElementaryFunctions/ArcTanh/06/01/03/01/" target="_top">approximation</a>:
</p>
<p>
<span class="inlinemediaobject"><img src="../../../equations/atanh2.svg"></span>
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/atanh2.svg"></span>
</p></blockquote></div>
<p>
Otherwise the <a href="http://functions.wolfram.com/ElementaryFunctions/ArcTanh/02/" target="_top">primary
definition</a>:
</p>
<p>
<span class="inlinemediaobject"><img src="../../../equations/atanh1.svg"></span>
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/atanh1.svg"></span>
</p></blockquote></div>
<p>
or its equivalent form:
</p>
<p>
<span class="inlinemediaobject"><img src="../../../equations/atanh3.svg"></span>
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/atanh3.svg"></span>
</p></blockquote></div>
<p>
is used.
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2010, 2012-2014, 2017 Nikhar
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Johan R&#229;de, Gautam
Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle Walker
and Xiaogang Zhang<p>
<td align="right"><div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>