[DEV] add v1.76.0

This commit is contained in:
2021-10-05 21:37:46 +02:00
parent a97e9ae7d4
commit d0115b733d
45133 changed files with 4744437 additions and 1026325 deletions

View File

@@ -1,10 +1,10 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Binomial Coefficients</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../../index.html" title="Math Toolkit 2.6.0">
<link rel="home" href="../../index.html" title="Math Toolkit 3.0.0">
<link rel="up" href="../factorials.html" title="Factorials and Binomial Coefficients">
<link rel="prev" href="sf_falling_factorial.html" title="Falling Factorial">
<link rel="next" href="../sf_beta.html" title="Beta Functions">
@@ -33,8 +33,8 @@
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="identifier">T</span> <span class="identifier">binomial_coefficient</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">T</span> <span class="identifier">binomial_coefficient</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">T</span> <span class="identifier">binomial_coefficient</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
<span class="special">}}</span> <span class="comment">// namespaces</span>
</pre>
@@ -45,9 +45,9 @@
Requires k &lt;= n.
</p>
<p>
The final <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
The final <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
be used to control the behaviour of the function: how it handles errors,
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">policy
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">policy
documentation for more details</a>.
</p>
<p>
@@ -62,15 +62,16 @@
<tr><td align="left" valign="top">
<p>
The functions described above are templates where the template argument
T can not be deduced from the arguments passed to the function. Therefore
if you write something like:
<code class="computeroutput"><span class="identifier">T</span></code> can not be deduced from
the arguments passed to the function. Therefore if you write something
like:
</p>
<p>
<code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">binomial_coefficient</span><span class="special">(</span><span class="number">10</span><span class="special">,</span> <span class="number">2</span><span class="special">);</span></code>
</p>
<p>
You will get a compiler error, ususally indicating that there is no such
function to be found. Instead you need to specifiy the return type explicity
You will get a compiler error, usually indicating that there is no such
function to be found. Instead you need to specify the return type explicitly
and write:
</p>
<p>
@@ -98,7 +99,7 @@
<span class="phrase"><a name="math_toolkit.factorials.sf_binomial.testing"></a></span><a class="link" href="sf_binomial.html#math_toolkit.factorials.sf_binomial.testing">Testing</a>
</h5>
<p>
The spot tests for the binomial coefficients use data generated by functions.wolfram.com.
The spot tests for the binomial coefficients use data generated by <a href="http://www.wolframalpha.com/" target="_top">Wolfram Alpha</a>.
</p>
<h5>
<a name="math_toolkit.factorials.sf_binomial.h2"></a>
@@ -108,31 +109,31 @@
Binomial coefficients are calculated using table lookup of factorials where
possible using:
</p>
<p>
<sub>n</sub>C<sub>k</sub> = n! / (k!(n-k)!)
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="serif_italic"><span class="emphasis"><em><sub>n</sub>C<sub>k</sub> = n! / (k!(n-k)!)</em></span></span>
</p></blockquote></div>
<p>
Otherwise it is implemented in terms of the beta function using the relations:
</p>
<p>
<sub>n</sub>C<sub>k</sub> = 1 / (k * <a class="link" href="../sf_beta/beta_function.html" title="Beta">beta</a>(k,
n-k+1))
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="serif_italic"><span class="emphasis"><em><sub>n</sub>C<sub>k</sub> = 1 / (k * <a class="link" href="../sf_beta/beta_function.html" title="Beta">beta</a>(k,
n-k+1))</em></span></span>
</p></blockquote></div>
<p>
and
</p>
<p>
<sub>n</sub>C<sub>k</sub> = 1 / ((n-k) * <a class="link" href="../sf_beta/beta_function.html" title="Beta">beta</a>(k+1,
n-k))
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="serif_italic"><span class="emphasis"><em><sub>n</sub>C<sub>k</sub> = 1 / ((n-k) * <a class="link" href="../sf_beta/beta_function.html" title="Beta">beta</a>(k+1,
n-k))</em></span></span>
</p></blockquote></div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2010, 2012-2014, 2017 Nikhar
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Johan R&#229;de, Gautam
Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle Walker
and Xiaogang Zhang<p>
<td align="right"><div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>

View File

@@ -1,10 +1,10 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Double Factorial</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../../index.html" title="Math Toolkit 2.6.0">
<link rel="home" href="../../index.html" title="Math Toolkit 3.0.0">
<link rel="up" href="../factorials.html" title="Factorials and Binomial Coefficients">
<link rel="prev" href="sf_factorial.html" title="Factorial">
<link rel="next" href="sf_rising_factorial.html" title="Rising Factorial">
@@ -33,8 +33,8 @@
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="identifier">T</span> <span class="identifier">double_factorial</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">i</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">T</span> <span class="identifier">double_factorial</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">i</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">T</span> <span class="identifier">double_factorial</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">i</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
<span class="special">}}</span> <span class="comment">// namespaces</span>
</pre>
@@ -42,9 +42,9 @@
Returns <code class="literal">i!!</code>.
</p>
<p>
The final <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
The final <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
be used to control the behaviour of the function: how it handles errors,
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">policy
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">policy
documentation for more details</a>.
</p>
<p>
@@ -68,9 +68,9 @@
<code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">double_factorial</span><span class="special">(</span><span class="number">2</span><span class="special">);</span></code>
</p>
<p>
You will get a (possibly perplexing) compiler error, ususally indicating
that there is no such function to be found. Instead you need to specifiy
the return type explicity and write:
You will get a (possibly perplexing) compiler error, usually indicating
that there is no such function to be found. Instead you need to specify
the return type explicitly and write:
</p>
<p>
<code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">double_factorial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="number">2</span><span class="special">);</span></code>
@@ -119,7 +119,8 @@
<span class="phrase"><a name="math_toolkit.factorials.sf_double_factorial.testing"></a></span><a class="link" href="sf_double_factorial.html#math_toolkit.factorials.sf_double_factorial.testing">Testing</a>
</h5>
<p>
The spot tests for the double factorial use data generated by functions.wolfram.com.
The spot tests for the double factorial use data generated by <a href="http://www.wolframalpha.com/" target="_top">Wolfram
Alpha</a>.
</p>
<h5>
<a name="math_toolkit.factorials.sf_double_factorial.h2"></a>
@@ -129,26 +130,26 @@
The double factorial is implemented in terms of the factorial and gamma functions
using the relations:
</p>
<p>
(2n)!! = 2<sup>n </sup> * n!
</p>
<p>
(2n+1)!! = (2n+1)! / (2<sup>n </sup> n!)
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="serif_italic"><span class="emphasis"><em>(2n)!! = 2<sup>n </sup> * n!</em></span></span>
</p></blockquote></div>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="serif_italic"><span class="emphasis"><em>(2n+1)!! = (2n+1)! / (2<sup>n </sup> n!)</em></span></span>
</p></blockquote></div>
<p>
and
</p>
<p>
(2n-1)!! = &#915;((2n+1)/2) * 2<sup>n </sup> / sqrt(pi)
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="serif_italic"><span class="emphasis"><em>(2n-1)!! = Γ((2n+1)/2) * 2<sup>n </sup> / sqrt(pi)</em></span></span>
</p></blockquote></div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2010, 2012-2014, 2017 Nikhar
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Johan R&#229;de, Gautam
Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle Walker
and Xiaogang Zhang<p>
<td align="right"><div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>

View File

@@ -1,10 +1,10 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Factorial</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../../index.html" title="Math Toolkit 2.6.0">
<link rel="home" href="../../index.html" title="Math Toolkit 3.0.0">
<link rel="up" href="../factorials.html" title="Factorials and Binomial Coefficients">
<link rel="prev" href="../factorials.html" title="Factorials and Binomial Coefficients">
<link rel="next" href="sf_double_factorial.html" title="Double Factorial">
@@ -37,11 +37,11 @@
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="identifier">T</span> <span class="identifier">factorial</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">i</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">T</span> <span class="identifier">factorial</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">i</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">T</span> <span class="identifier">factorial</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">i</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="identifier">T</span> <span class="identifier">unchecked_factorial</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">i</span><span class="special">);</span>
<span class="keyword">constexpr</span> <span class="identifier">T</span> <span class="identifier">unchecked_factorial</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">i</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="keyword">struct</span> <span class="identifier">max_factorial</span><span class="special">;</span>
@@ -67,9 +67,9 @@
<code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">factorial</span><span class="special">(</span><span class="number">2</span><span class="special">);</span></code>
</p>
<p>
You will get a (perhaps perplexing) compiler error, ususally indicating
You will get a (perhaps perplexing) compiler error, usually indicating
that there is no such function to be found. Instead you need to specify
the return type explicity and write:
the return type explicitly and write:
</p>
<p>
<code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">factorial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="number">2</span><span class="special">);</span></code>
@@ -100,16 +100,16 @@
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="identifier">T</span> <span class="identifier">factorial</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">i</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">T</span> <span class="identifier">factorial</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">i</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<span class="identifier">T</span> <span class="identifier">factorial</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">i</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
</pre>
<p>
Returns <code class="literal">i!</code>.
</p>
<p>
The final <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
The final <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
be used to control the behaviour of the function: how it handles errors,
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">policy
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">policy
documentation for more details</a>.
</p>
<p>
@@ -122,7 +122,7 @@
in type T, then calls <a class="link" href="../error_handling.html#math_toolkit.error_handling.overflow_error">overflow_error</a>.
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<span class="identifier">T</span> <span class="identifier">unchecked_factorial</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">i</span><span class="special">);</span>
<span class="keyword">constexpr</span> <span class="identifier">T</span> <span class="identifier">unchecked_factorial</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">i</span><span class="special">);</span>
</pre>
<p>
Returns <code class="literal">i!</code>.
@@ -147,6 +147,10 @@
where integral constant expressions are required: for example to define the
size of further tables that depend on the factorials.
</p>
<p>
This function is <code class="computeroutput"><span class="keyword">constexpr</span></code> only
if the compiler supports C++14 constexpr functions.
</p>
<h5>
<a name="math_toolkit.factorials.sf_factorial.h2"></a>
<span class="phrase"><a name="math_toolkit.factorials.sf_factorial.accuracy"></a></span><a class="link" href="sf_factorial.html#math_toolkit.factorials.sf_factorial.accuracy">Accuracy</a>
@@ -176,11 +180,11 @@
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2010, 2012-2014, 2017 Nikhar
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Johan R&#229;de, Gautam
Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle Walker
and Xiaogang Zhang<p>
<td align="right"><div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>

View File

@@ -1,10 +1,10 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Falling Factorial</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../../index.html" title="Math Toolkit 2.6.0">
<link rel="home" href="../../index.html" title="Math Toolkit 3.0.0">
<link rel="up" href="../factorials.html" title="Factorials and Binomial Coefficients">
<link rel="prev" href="sf_rising_factorial.html" title="Rising Factorial">
<link rel="next" href="sf_binomial.html" title="Binomial Coefficients">
@@ -34,26 +34,26 @@
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">falling_factorial</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">i</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">falling_factorial</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">i</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">falling_factorial</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">i</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
<span class="special">}}</span> <span class="comment">// namespaces</span>
</pre>
<p>
Returns the falling factorial of <span class="emphasis"><em>x</em></span> and <span class="emphasis"><em>i</em></span>:
</p>
<p>
falling_factorial(x, i) = x(x-1)(x-2)(x-3)...(x-i+1)
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="serif_italic"><span class="emphasis"><em>falling_factorial(x, i) = x(x-1)(x-2)(x-3)...(x-i+1)</em></span></span>
</p></blockquote></div>
<p>
Note that this function is only defined for positive <span class="emphasis"><em>i</em></span>,
hence the <code class="computeroutput"><span class="keyword">unsigned</span></code> second argument.
Argument <span class="emphasis"><em>x</em></span> can be either positive or negative however.
</p>
<p>
The final <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
The final <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
be used to control the behaviour of the function: how it handles errors,
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">policy
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">policy
documentation for more details</a>.
</p>
<p>
@@ -78,7 +78,7 @@
<span class="phrase"><a name="math_toolkit.factorials.sf_falling_factorial.testing"></a></span><a class="link" href="sf_falling_factorial.html#math_toolkit.factorials.sf_falling_factorial.testing">Testing</a>
</h5>
<p>
The spot tests for the falling factorials use data generated by functions.wolfram.com.
The spot tests for the falling factorials use data generated by <a href="https://functions.wolfram.com" target="_top">functions.wolfram.com</a>.
</p>
<h5>
<a name="math_toolkit.factorials.sf_falling_factorial.h2"></a>
@@ -93,11 +93,11 @@
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2010, 2012-2014, 2017 Nikhar
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Johan R&#229;de, Gautam
Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle Walker
and Xiaogang Zhang<p>
<td align="right"><div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>

View File

@@ -1,10 +1,10 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Rising Factorial</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../../index.html" title="Math Toolkit 2.6.0">
<link rel="home" href="../../index.html" title="Math Toolkit 3.0.0">
<link rel="up" href="../factorials.html" title="Factorials and Binomial Coefficients">
<link rel="prev" href="sf_double_factorial.html" title="Double Factorial">
<link rel="next" href="sf_falling_factorial.html" title="Falling Factorial">
@@ -33,31 +33,32 @@
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">rising_factorial</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">i</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">rising_factorial</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">i</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">rising_factorial</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">i</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
<span class="special">}}</span> <span class="comment">// namespaces</span>
</pre>
<p>
Returns the rising factorial of <span class="emphasis"><em>x</em></span> and <span class="emphasis"><em>i</em></span>:
</p>
<p>
rising_factorial(x, i) = &#915;(x + i) / &#915;(x);
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="serif_italic"><span class="emphasis"><em>rising_factorial(x, i) = Γ(x + i)
/ Γ(x)</em></span></span>
</p></blockquote></div>
<p>
or
</p>
<p>
rising_factorial(x, i) = x(x+1)(x+2)(x+3)...(x+i-1)
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="serif_italic"><span class="emphasis"><em>rising_factorial(x, i) = x(x+1)(x+2)(x+3)...(x+i-1)</em></span></span>
</p></blockquote></div>
<p>
Note that both <span class="emphasis"><em>x</em></span> and <span class="emphasis"><em>i</em></span> can be negative
as well as positive.
</p>
<p>
The final <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
The final <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
be used to control the behaviour of the function: how it handles errors,
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter&#160;18.&#160;Policies: Controlling Precision, Error Handling etc">policy
what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">policy
documentation for more details</a>.
</p>
<p>
@@ -82,26 +83,26 @@
<span class="phrase"><a name="math_toolkit.factorials.sf_rising_factorial.testing"></a></span><a class="link" href="sf_rising_factorial.html#math_toolkit.factorials.sf_rising_factorial.testing">Testing</a>
</h5>
<p>
The spot tests for the rising factorials use data generated by functions.wolfram.com.
The spot tests for the rising factorials use data generated by <a href="https://functions.wolfram.com" target="_top">functions.wolfram.com</a>.
</p>
<h5>
<a name="math_toolkit.factorials.sf_rising_factorial.h2"></a>
<span class="phrase"><a name="math_toolkit.factorials.sf_rising_factorial.implementation"></a></span><a class="link" href="sf_rising_factorial.html#math_toolkit.factorials.sf_rising_factorial.implementation">Implementation</a>
</h5>
<p>
Rising and falling factorials are implemented as ratios of gamma functions
using <a class="link" href="../sf_gamma/gamma_ratios.html" title="Ratios of Gamma Functions">tgamma_delta_ratio</a>.
Rising and factorials are implemented as ratios of gamma functions using
<a class="link" href="../sf_gamma/gamma_ratios.html" title="Ratios of Gamma Functions">tgamma_delta_ratio</a>.
Optimisations for small integer arguments are handled internally by that
function.
</p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2006-2010, 2012-2014, 2017 Nikhar
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Johan R&#229;de, Gautam
Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle Walker
and Xiaogang Zhang<p>
<td align="right"><div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>