[DEV] add v1.66.0

This commit is contained in:
2018-01-12 21:47:58 +01:00
parent 87059bb1af
commit a97e9ae7d4
49032 changed files with 7668950 additions and 0 deletions

View File

@@ -0,0 +1,280 @@
// Copyright 2011 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/detail/lightweight_test.hpp>
#include <boost/limits.hpp>
#include <boost/static_assert.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/unordered/detail/implementation.hpp>
// Boilerplate
#define ALLOCATOR_METHODS(name) \
template <typename U> struct rebind \
{ \
typedef name<U> other; \
}; \
\
name() {} \
template <typename Y> name(name<Y> const&) {} \
T* address(T& r) { return &r; } \
T const* address(T const& r) { return &r; } \
T* allocate(std::size_t n) \
{ \
return static_cast<T*>(::operator new(n * sizeof(T))); \
} \
T* allocate(std::size_t n, void const*) \
{ \
return static_cast<T*>(::operator new(n * sizeof(T))); \
} \
void deallocate(T* p, std::size_t) { ::operator delete((void*)p); } \
void construct(T* p, T const& t) { new (p) T(t); } \
void destroy(T* p) { p->~T(); } \
std::size_t max_size() const \
{ \
return (std::numeric_limits<std::size_t>::max)(); \
} \
bool operator==(name<T> const&) { return true; } \
bool operator!=(name<T> const&) { return false; } \
/**/
#define ALLOCATOR_METHODS_TYPEDEFS(name) \
template <typename U> struct rebind \
{ \
typedef name<U> other; \
}; \
\
name() {} \
template <typename Y> name(name<Y> const&) {} \
pointer address(T& r) { return &r; } \
const_pointer address(T const& r) { return &r; } \
pointer allocate(std::size_t n) \
{ \
return pointer(::operator new(n * sizeof(T))); \
} \
pointer allocate(std::size_t n, void const*) \
{ \
return pointer(::operator new(n * sizeof(T))); \
} \
void deallocate(pointer p, std::size_t) { ::operator delete((void*)p); } \
void construct(T* p, T const& t) { new (p) T(t); } \
void destroy(T* p) { p->~T(); } \
size_type max_size() const \
{ \
return (std::numeric_limits<size_type>::max)(); \
} \
bool operator==(name<T> const&) { return true; } \
bool operator!=(name<T> const&) { return false; } \
/**/
struct yes_type
{
enum
{
value = true
};
};
struct no_type
{
enum
{
value = false
};
};
// For tracking calls...
static int selected;
void reset() { selected = 0; }
template <typename Allocator> int call_select()
{
typedef boost::unordered::detail::allocator_traits<Allocator> traits;
Allocator a;
reset();
BOOST_TEST(traits::select_on_container_copy_construction(a) == a);
return selected;
}
// Empty allocator test
template <typename T> struct empty_allocator
{
typedef T value_type;
ALLOCATOR_METHODS(empty_allocator)
};
void test_empty_allocator()
{
typedef empty_allocator<int> allocator;
typedef boost::unordered::detail::allocator_traits<allocator> traits;
#if BOOST_UNORDERED_USE_ALLOCATOR_TRAITS == 1
BOOST_STATIC_ASSERT((boost::is_same<traits::size_type,
std::make_unsigned<std::ptrdiff_t>::type>::value));
#else
BOOST_STATIC_ASSERT((boost::is_same<traits::size_type, std::size_t>::value));
#endif
BOOST_STATIC_ASSERT(
(boost::is_same<traits::difference_type, std::ptrdiff_t>::value));
BOOST_STATIC_ASSERT((boost::is_same<traits::pointer, int*>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<traits::const_pointer, int const*>::value));
BOOST_STATIC_ASSERT((boost::is_same<traits::value_type, int>::value));
BOOST_TEST(!traits::propagate_on_container_copy_assignment::value);
BOOST_TEST(!traits::propagate_on_container_move_assignment::value);
BOOST_TEST(!traits::propagate_on_container_swap::value);
BOOST_TEST(call_select<allocator>() == 0);
}
// allocator 1
template <typename T> struct allocator1
{
typedef T value_type;
ALLOCATOR_METHODS(allocator1)
typedef yes_type propagate_on_container_copy_assignment;
typedef yes_type propagate_on_container_move_assignment;
typedef yes_type propagate_on_container_swap;
allocator1<T> select_on_container_copy_construction() const
{
++selected;
return allocator1<T>();
}
};
void test_allocator1()
{
typedef allocator1<int> allocator;
typedef boost::unordered::detail::allocator_traits<allocator> traits;
#if BOOST_UNORDERED_USE_ALLOCATOR_TRAITS == 1
BOOST_STATIC_ASSERT((boost::is_same<traits::size_type,
std::make_unsigned<std::ptrdiff_t>::type>::value));
#else
BOOST_STATIC_ASSERT((boost::is_same<traits::size_type, std::size_t>::value));
#endif
BOOST_STATIC_ASSERT(
(boost::is_same<traits::difference_type, std::ptrdiff_t>::value));
BOOST_STATIC_ASSERT((boost::is_same<traits::pointer, int*>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<traits::const_pointer, int const*>::value));
BOOST_STATIC_ASSERT((boost::is_same<traits::value_type, int>::value));
BOOST_TEST(traits::propagate_on_container_copy_assignment::value);
BOOST_TEST(traits::propagate_on_container_move_assignment::value);
BOOST_TEST(traits::propagate_on_container_swap::value);
BOOST_TEST(call_select<allocator>() == 1);
}
// allocator 2
template <typename Alloc> struct allocator2_base
{
Alloc select_on_container_copy_construction() const
{
++selected;
return Alloc();
}
};
template <typename T> struct allocator2 : allocator2_base<allocator2<T> >
{
typedef T value_type;
typedef T* pointer;
typedef T const* const_pointer;
typedef std::size_t size_type;
ALLOCATOR_METHODS(allocator2)
typedef no_type propagate_on_container_copy_assignment;
typedef no_type propagate_on_container_move_assignment;
typedef no_type propagate_on_container_swap;
};
void test_allocator2()
{
typedef allocator2<int> allocator;
typedef boost::unordered::detail::allocator_traits<allocator> traits;
BOOST_STATIC_ASSERT((boost::is_same<traits::size_type, std::size_t>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<traits::difference_type, std::ptrdiff_t>::value));
BOOST_STATIC_ASSERT((boost::is_same<traits::pointer, int*>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<traits::const_pointer, int const*>::value));
BOOST_STATIC_ASSERT((boost::is_same<traits::value_type, int>::value));
BOOST_TEST(!traits::propagate_on_container_copy_assignment::value);
BOOST_TEST(!traits::propagate_on_container_move_assignment::value);
BOOST_TEST(!traits::propagate_on_container_swap::value);
BOOST_TEST(call_select<allocator>() == 1);
}
// allocator 3
template <typename T> struct ptr
{
T* value_;
ptr(void* v) : value_((T*)v) {}
T& operator*() const { return *value_; }
};
template <> struct ptr<void>
{
void* value_;
ptr(void* v) : value_(v) {}
};
template <> struct ptr<const void>
{
void const* value_;
ptr(void const* v) : value_(v) {}
};
template <typename T> struct allocator3
{
typedef T value_type;
typedef ptr<T> pointer;
typedef ptr<T const> const_pointer;
typedef unsigned short size_type;
ALLOCATOR_METHODS_TYPEDEFS(allocator3)
typedef yes_type propagate_on_container_copy_assignment;
typedef no_type propagate_on_container_move_assignment;
allocator3<T> select_on_container_copy_construction() const
{
++selected;
return allocator3<T>();
}
};
void test_allocator3()
{
typedef allocator3<int> allocator;
typedef boost::unordered::detail::allocator_traits<allocator> traits;
BOOST_STATIC_ASSERT(
(boost::is_same<traits::size_type, unsigned short>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<traits::difference_type, std::ptrdiff_t>::value));
BOOST_STATIC_ASSERT((boost::is_same<traits::pointer, ptr<int> >::value));
BOOST_STATIC_ASSERT(
(boost::is_same<traits::const_pointer, ptr<int const> >::value));
BOOST_STATIC_ASSERT((boost::is_same<traits::value_type, int>::value));
BOOST_TEST(traits::propagate_on_container_copy_assignment::value);
BOOST_TEST(!traits::propagate_on_container_move_assignment::value);
BOOST_TEST(!traits::propagate_on_container_swap::value);
BOOST_TEST(call_select<allocator>() == 1);
}
int main()
{
test_empty_allocator();
test_allocator1();
test_allocator2();
test_allocator3();
return boost::report_errors();
}

View File

@@ -0,0 +1,297 @@
// Copyright 2006-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include "../helpers/test.hpp"
#include "../objects/test.hpp"
#include "../objects/cxx11_allocator.hpp"
#include "../helpers/random_values.hpp"
#include "../helpers/tracker.hpp"
#include "../helpers/equivalent.hpp"
#if defined(BOOST_MSVC)
#pragma warning(disable : 4127) // conditional expression is constant
#endif
namespace assign_tests {
test::seed_t initialize_seed(96785);
template <class T> void assign_tests1(T*, test::random_generator generator)
{
BOOST_DEDUCED_TYPENAME T::hasher hf;
BOOST_DEDUCED_TYPENAME T::key_equal eq;
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "assign_tests1.1\n";
{
test::check_instances check_;
T x;
x = x;
BOOST_TEST(x.empty());
BOOST_TEST(test::equivalent(x.hash_function(), hf));
BOOST_TEST(test::equivalent(x.key_eq(), eq));
}
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "assign_tests1.2\n";
{
test::check_instances check_;
test::random_values<T> v(1000, generator);
T x(v.begin(), v.end());
test::ordered<T> tracker = test::create_ordered(x);
tracker.insert_range(v.begin(), v.end());
x = x;
tracker.compare(x);
T y;
y.max_load_factor(x.max_load_factor() / 20);
float mlf = x.max_load_factor();
y = x;
tracker.compare(x);
tracker.compare(y);
BOOST_TEST(x.max_load_factor() == mlf);
BOOST_TEST(y.max_load_factor() == mlf);
BOOST_TEST(y.load_factor() <= y.max_load_factor());
}
}
template <class T> void assign_tests2(T*, test::random_generator generator)
{
BOOST_DEDUCED_TYPENAME T::hasher hf1(1);
BOOST_DEDUCED_TYPENAME T::hasher hf2(2);
BOOST_DEDUCED_TYPENAME T::key_equal eq1(1);
BOOST_DEDUCED_TYPENAME T::key_equal eq2(2);
BOOST_DEDUCED_TYPENAME T::allocator_type al1(1);
BOOST_DEDUCED_TYPENAME T::allocator_type al2(2);
typedef BOOST_DEDUCED_TYPENAME T::allocator_type allocator_type;
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "assign_tests2.0 - empty container\n";
{
test::check_instances check_;
T x1(0, hf1, eq1);
T x2(0, hf2, eq2);
x2 = x1;
BOOST_TEST(test::equivalent(x1.hash_function(), hf1));
BOOST_TEST(test::equivalent(x1.key_eq(), eq1));
BOOST_TEST(test::equivalent(x2.hash_function(), hf1));
BOOST_TEST(test::equivalent(x2.key_eq(), eq1));
test::check_container(x1, x2);
}
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "assign_tests2.1\n";
{
test::check_instances check_;
test::random_values<T> v(1000, generator);
T x1(v.begin(), v.end(), 0, hf1, eq1);
T x2(0, hf2, eq2);
x2 = x1;
BOOST_TEST(test::equivalent(x1.hash_function(), hf1));
BOOST_TEST(test::equivalent(x1.key_eq(), eq1));
BOOST_TEST(test::equivalent(x2.hash_function(), hf1));
BOOST_TEST(test::equivalent(x2.key_eq(), eq1));
test::check_container(x1, v);
test::check_container(x2, v);
BOOST_TEST(x2.load_factor() <= x2.max_load_factor());
}
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "assign_tests2.1a\n";
{
test::check_instances check_;
test::random_values<T> v1(0, generator);
test::random_values<T> v2(1000, generator);
T x1(0, hf2, eq2);
T x2(v2.begin(), v2.end(), 0, hf1, eq1);
x2 = x1;
BOOST_TEST(test::equivalent(x1.hash_function(), hf2));
BOOST_TEST(test::equivalent(x1.key_eq(), eq2));
BOOST_TEST(test::equivalent(x2.hash_function(), hf2));
BOOST_TEST(test::equivalent(x2.key_eq(), eq2));
test::check_container(x1, v1);
test::check_container(x2, v1);
BOOST_TEST(x2.load_factor() <= x2.max_load_factor());
}
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "assign_tests2.2\n";
{
test::check_instances check_;
test::random_values<T> v1(100, generator), v2(100, generator);
T x1(v1.begin(), v1.end(), 0, hf1, eq1, al1);
T x2(v2.begin(), v2.end(), 0, hf2, eq2, al2);
x2 = x1;
BOOST_TEST(test::equivalent(x2.hash_function(), hf1));
BOOST_TEST(test::equivalent(x2.key_eq(), eq1));
if (allocator_type::is_propagate_on_assign) {
BOOST_TEST(test::equivalent(x2.get_allocator(), al1));
BOOST_TEST(!test::equivalent(x2.get_allocator(), al2));
} else {
BOOST_TEST(test::equivalent(x2.get_allocator(), al2));
BOOST_TEST(!test::equivalent(x2.get_allocator(), al1));
}
test::check_container(x1, v1);
test::check_container(x2, v1);
BOOST_TEST(x2.load_factor() <= x2.max_load_factor());
}
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "assign_tests2.3\n";
{
test::check_instances check_;
test::random_values<T> v1(100, generator), v2(1000, generator);
T x1(v1.begin(), v1.end(), 0, hf1, eq1, al1);
T x2(v2.begin(), v2.end(), 0, hf2, eq2, al2);
x2 = x1;
BOOST_TEST(test::equivalent(x2.hash_function(), hf1));
BOOST_TEST(test::equivalent(x2.key_eq(), eq1));
if (allocator_type::is_propagate_on_assign) {
BOOST_TEST(test::equivalent(x2.get_allocator(), al1));
BOOST_TEST(!test::equivalent(x2.get_allocator(), al2));
} else {
BOOST_TEST(test::equivalent(x2.get_allocator(), al2));
BOOST_TEST(!test::equivalent(x2.get_allocator(), al1));
}
test::check_container(x1, v1);
test::check_container(x2, v1);
BOOST_TEST(x2.load_factor() <= x2.max_load_factor());
}
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "assign_tests2.4\n";
{
test::check_instances check_;
test::random_values<T> v1(1000, generator), v2(100, generator);
T x1(v1.begin(), v1.end(), 0, hf1, eq1, al1);
T x2(v2.begin(), v2.end(), 0, hf2, eq2, al2);
x2 = x1;
BOOST_TEST(test::equivalent(x2.hash_function(), hf1));
BOOST_TEST(test::equivalent(x2.key_eq(), eq1));
if (allocator_type::is_propagate_on_assign) {
BOOST_TEST(test::equivalent(x2.get_allocator(), al1));
BOOST_TEST(!test::equivalent(x2.get_allocator(), al2));
} else {
BOOST_TEST(test::equivalent(x2.get_allocator(), al2));
BOOST_TEST(!test::equivalent(x2.get_allocator(), al1));
}
test::check_container(x1, v1);
test::check_container(x2, v1);
BOOST_TEST(x2.load_factor() <= x2.max_load_factor());
}
}
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
std::allocator<test::object> >* test_map_std_alloc;
boost::unordered_set<test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_set;
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_multiset;
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_map;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::allocator1<test::object> >* test_multimap;
boost::unordered_set<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_assign> >*
test_set_prop_assign;
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_assign> >*
test_multiset_prop_assign;
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_assign> >*
test_map_prop_assign;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to,
test::cxx11_allocator<test::object, test::propagate_assign> >*
test_multimap_prop_assign;
boost::unordered_set<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_assign> >*
test_set_no_prop_assign;
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_assign> >*
test_multiset_no_prop_assign;
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_assign> >*
test_map_no_prop_assign;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_assign> >*
test_multimap_no_prop_assign;
using test::default_generator;
using test::generate_collisions;
using test::limited_range;
template <typename T> bool is_propagate(T*)
{
return T::allocator_type::is_propagate_on_assign;
}
UNORDERED_AUTO_TEST (check_traits) {
BOOST_TEST(!is_propagate(test_set));
BOOST_TEST(is_propagate(test_set_prop_assign));
BOOST_TEST(!is_propagate(test_set_no_prop_assign));
}
UNORDERED_TEST(assign_tests1,
((test_map_std_alloc)(test_set)(test_multiset)(test_map)(test_multimap)(
test_set_prop_assign)(test_multiset_prop_assign)(test_map_prop_assign)(
test_multimap_prop_assign)(test_set_no_prop_assign)(
test_multiset_no_prop_assign)(test_map_no_prop_assign)(
test_multimap_no_prop_assign))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(
assign_tests2, ((test_set)(test_multiset)(test_map)(test_multimap)(
test_set_prop_assign)(test_multiset_prop_assign)(
test_map_prop_assign)(test_multimap_prop_assign)(
test_set_no_prop_assign)(test_multiset_no_prop_assign)(
test_map_no_prop_assign)(test_multimap_no_prop_assign))(
(default_generator)(generate_collisions)(limited_range)))
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
UNORDERED_AUTO_TEST (assign_default_initializer_list) {
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Initializer List Tests\n";
std::initializer_list<std::pair<int const, int> > init;
boost::unordered_map<int, int> x1;
x1[25] = 3;
x1[16] = 10;
BOOST_TEST(!x1.empty());
x1 = init;
BOOST_TEST(x1.empty());
}
#endif
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
UNORDERED_AUTO_TEST (assign_initializer_list) {
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Initializer List Tests\n";
boost::unordered_set<int> x;
x.insert(10);
x.insert(20);
x = {1, 2, -10};
BOOST_TEST(x.find(10) == x.end());
BOOST_TEST(x.find(-10) != x.end());
}
#endif
}
RUN_TESTS()

View File

@@ -0,0 +1,67 @@
// Copyright 2007-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include "../helpers/test.hpp"
#include <string>
namespace at_tests {
UNORDERED_AUTO_TEST (at_tests) {
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Create Map" << std::endl;
boost::unordered_map<std::string, int> x;
boost::unordered_map<std::string, int> const& x_const(x);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Check empty container" << std::endl;
try {
x.at("one");
BOOST_ERROR("Should have thrown.");
} catch (std::out_of_range) {
}
try {
x_const.at("one");
BOOST_ERROR("Should have thrown.");
} catch (std::out_of_range) {
}
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Add elements" << std::endl;
x["one"] = 1;
x["two"] = 2;
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Check existing elements" << std::endl;
BOOST_TEST(x.at("one") == 1);
BOOST_TEST(x.at("two") == 2);
BOOST_TEST(x_const.at("one") == 1);
BOOST_TEST(x_const.at("two") == 2);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Check missing element" << std::endl;
try {
x.at("three");
BOOST_ERROR("Should have thrown.");
} catch (std::out_of_range) {
}
try {
x_const.at("three");
BOOST_ERROR("Should have thrown.");
} catch (std::out_of_range) {
}
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Finished" << std::endl;
}
}
RUN_TESTS()

View File

@@ -0,0 +1,95 @@
// Copyright 2006-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include "../helpers/test.hpp"
#include <algorithm>
#include "../objects/test.hpp"
#include "../helpers/random_values.hpp"
#include "../helpers/helpers.hpp"
#if BOOST_WORKAROUND(BOOST_MSVC, < 1400)
#pragma warning(disable : 4267) // conversion from 'size_t' to 'unsigned int',
// possible loss of data.
#endif
namespace bucket_tests {
test::seed_t initialize_seed(54635);
template <class X> void tests(X*, test::random_generator generator)
{
test::check_instances check_;
typedef BOOST_DEDUCED_TYPENAME X::size_type size_type;
typedef BOOST_DEDUCED_TYPENAME X::const_local_iterator const_local_iterator;
test::random_values<X> v(1000, generator);
X x(v.begin(), v.end());
BOOST_TEST(x.bucket_count() <= x.max_bucket_count());
if (!(x.bucket_count() <= x.max_bucket_count())) {
BOOST_LIGHTWEIGHT_TEST_OSTREAM << x.bucket_count()
<< "<=" << x.max_bucket_count() << "\n";
}
for (BOOST_DEDUCED_TYPENAME test::random_values<X>::const_iterator
it = v.begin(),
end = v.end();
it != end; ++it) {
size_type bucket = x.bucket(test::get_key<X>(*it));
BOOST_TEST(bucket < x.bucket_count());
if (bucket < x.bucket_count()) {
// lit? lend?? I need a new naming scheme.
const_local_iterator lit = x.begin(bucket), lend = x.end(bucket);
while (lit != lend && test::get_key<X>(*it) != test::get_key<X>(*lit)) {
++lit;
}
BOOST_TEST(lit != lend);
}
}
for (size_type i = 0; i < x.bucket_count(); ++i) {
BOOST_TEST(x.bucket_size(i) ==
static_cast<size_type>(std::distance(x.begin(i), x.end(i))));
BOOST_TEST(x.bucket_size(i) ==
static_cast<size_type>(std::distance(x.cbegin(i), x.cend(i))));
X const& x_ref = x;
BOOST_TEST(x.bucket_size(i) == static_cast<size_type>(std::distance(
x_ref.begin(i), x_ref.end(i))));
BOOST_TEST(x.bucket_size(i) == static_cast<size_type>(std::distance(
x_ref.cbegin(i), x_ref.cend(i))));
}
}
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, std::allocator<test::object> >* test_multimap_std_alloc;
boost::unordered_set<test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_set;
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_multiset;
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_map;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::allocator2<test::object> >* test_multimap;
using test::default_generator;
using test::generate_collisions;
using test::limited_range;
UNORDERED_TEST(tests,
((test_multimap_std_alloc)(test_set)(test_multiset)(test_map)(
test_multimap))((default_generator)(generate_collisions)(limited_range)))
}
RUN_TESTS()

View File

@@ -0,0 +1,248 @@
// Copyright 2006-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// This test creates the containers with members that meet their minimum
// requirements. Makes sure everything compiles and is defined correctly.
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include "../helpers/test.hpp"
#include "../objects/minimal.hpp"
#include "./compile_tests.hpp"
// Explicit instantiation to catch compile-time errors
#define INSTANTIATE(type) \
template class boost::unordered::detail::instantiate_##type
INSTANTIATE(map)<int, int, boost::hash<int>, std::equal_to<int>,
test::minimal::allocator<int> >;
INSTANTIATE(multimap)<int const, int const, boost::hash<int>,
std::equal_to<int>, test::minimal::allocator<int> >;
INSTANTIATE(
map)<test::minimal::assignable const, test::minimal::default_assignable const,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<int> >;
INSTANTIATE(multimap)<test::minimal::assignable, test::minimal::assignable,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<int> >;
UNORDERED_AUTO_TEST (test0) {
test::minimal::constructor_param x;
typedef std::pair<test::minimal::assignable const, test::minimal::assignable>
value_type;
value_type value(x, x);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Test unordered_map.\n";
boost::unordered_map<int, int> int_map;
boost::unordered_map<int, int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<std::pair<int const, int> > >
int_map2;
boost::unordered_map<test::minimal::assignable, test::minimal::assignable,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<value_type> >
map;
container_test(int_map, std::pair<int const, int>(0, 0));
container_test(int_map2, std::pair<int const, int>(0, 0));
container_test(map, value);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Test unordered_multimap.\n";
boost::unordered_multimap<int, int> int_multimap;
boost::unordered_multimap<int, int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<std::pair<int const, int> > >
int_multimap2;
boost::unordered_multimap<test::minimal::assignable,
test::minimal::assignable, test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<value_type> >
multimap;
container_test(int_multimap, std::pair<int const, int>(0, 0));
container_test(int_multimap2, std::pair<int const, int>(0, 0));
container_test(multimap, value);
}
UNORDERED_AUTO_TEST (equality_tests) {
typedef std::pair<test::minimal::copy_constructible_equality_comparable const,
test::minimal::copy_constructible_equality_comparable>
value_type;
boost::unordered_map<int, int> int_map;
boost::unordered_map<int, int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<std::pair<int const, int> > >
int_map2;
boost::unordered_map<test::minimal::copy_constructible_equality_comparable,
test::minimal::copy_constructible_equality_comparable,
test::minimal::hash<test::minimal::copy_constructible_equality_comparable>,
test::minimal::equal_to<
test::minimal::copy_constructible_equality_comparable>,
test::minimal::allocator<value_type> >
map;
equality_test(int_map);
equality_test(int_map2);
equality_test(map);
boost::unordered_multimap<int, int> int_multimap;
boost::unordered_multimap<int, int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<std::pair<int const, int> > >
int_multimap2;
boost::unordered_multimap<
test::minimal::copy_constructible_equality_comparable,
test::minimal::copy_constructible_equality_comparable,
test::minimal::hash<test::minimal::copy_constructible_equality_comparable>,
test::minimal::equal_to<
test::minimal::copy_constructible_equality_comparable>,
test::minimal::allocator<value_type> >
multimap;
equality_test(int_multimap);
equality_test(int_multimap2);
equality_test(multimap);
}
UNORDERED_AUTO_TEST (test1) {
boost::hash<int> hash;
std::equal_to<int> equal_to;
int value = 0;
std::pair<int const, int> map_value(0, 0);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Test unordered_map.\n";
boost::unordered_map<int, int> map;
boost::unordered_map<int, int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<std::pair<int const, int> > >
map2;
unordered_unique_test(map, map_value);
unordered_map_test(map, value, value);
unordered_copyable_test(map, value, map_value, hash, equal_to);
unordered_map_functions(map, value, value);
unordered_unique_test(map2, map_value);
unordered_map_test(map2, value, value);
unordered_copyable_test(map2, value, map_value, hash, equal_to);
unordered_map_functions(map2, value, value);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Test unordered_multimap.\n";
boost::unordered_multimap<int, int> multimap;
boost::unordered_multimap<int, int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<std::pair<int const, int> > >
multimap2;
unordered_equivalent_test(multimap, map_value);
unordered_map_test(multimap, value, value);
unordered_copyable_test(multimap, value, map_value, hash, equal_to);
unordered_equivalent_test(multimap2, map_value);
unordered_map_test(multimap2, value, value);
unordered_copyable_test(multimap2, value, map_value, hash, equal_to);
}
UNORDERED_AUTO_TEST (test2) {
test::minimal::constructor_param x;
test::minimal::assignable assignable(x);
test::minimal::copy_constructible copy_constructible(x);
test::minimal::hash<test::minimal::assignable> hash(x);
test::minimal::equal_to<test::minimal::assignable> equal_to(x);
typedef std::pair<test::minimal::assignable const, test::minimal::assignable>
map_value_type;
map_value_type map_value(assignable, assignable);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Test unordered_map.\n";
boost::unordered_map<test::minimal::assignable, test::minimal::assignable,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<map_value_type> >
map;
unordered_unique_test(map, map_value);
unordered_map_test(map, assignable, assignable);
unordered_copyable_test(map, assignable, map_value, hash, equal_to);
unordered_map_member_test(map, map_value);
boost::unordered_map<test::minimal::assignable,
test::minimal::default_assignable,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<map_value_type> >
map2;
test::minimal::default_assignable default_assignable;
unordered_map_functions(map2, assignable, default_assignable);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Test unordered_multimap.\n";
boost::unordered_multimap<test::minimal::assignable,
test::minimal::assignable, test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<map_value_type> >
multimap;
unordered_equivalent_test(multimap, map_value);
unordered_map_test(multimap, assignable, assignable);
unordered_copyable_test(multimap, assignable, map_value, hash, equal_to);
unordered_map_member_test(multimap, map_value);
}
// Test for ambiguity when using key convertible from iterator
// See LWG2059
struct lwg2059_key
{
int value;
template <typename T> lwg2059_key(T v) : value(v) {}
};
std::size_t hash_value(lwg2059_key x)
{
return static_cast<std::size_t>(x.value);
}
bool operator==(lwg2059_key x, lwg2059_key y) { return x.value == y.value; }
UNORDERED_AUTO_TEST (lwg2059) {
{
boost::unordered_map<lwg2059_key, int> x;
x.emplace(lwg2059_key(10), 5);
x.erase(x.begin());
}
{
boost::unordered_multimap<lwg2059_key, int> x;
x.emplace(lwg2059_key(10), 5);
x.erase(x.begin());
}
}
RUN_TESTS()

View File

@@ -0,0 +1,313 @@
// Copyright 2006-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// This test creates the containers with members that meet their minimum
// requirements. Makes sure everything compiles and is defined correctly.
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include "../helpers/test.hpp"
#include "../objects/minimal.hpp"
#include "./compile_tests.hpp"
// Explicit instantiation to catch compile-time errors
#define INSTANTIATE(type) \
template class boost::unordered::detail::instantiate_##type
INSTANTIATE(set)<int, boost::hash<int>, std::equal_to<int>,
test::minimal::allocator<int> >;
INSTANTIATE(multiset)<int const, boost::hash<int>, std::equal_to<int>,
test::minimal::allocator<int> >;
INSTANTIATE(set)<test::minimal::assignable const,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<int> >;
INSTANTIATE(multiset)<test::minimal::assignable,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<int> >;
UNORDERED_AUTO_TEST (test0) {
test::minimal::constructor_param x;
test::minimal::assignable assignable(x);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Test unordered_set.\n";
boost::unordered_set<int> int_set;
boost::unordered_set<int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<int> >
int_set2;
boost::unordered_set<test::minimal::assignable,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<test::minimal::assignable> >
set;
container_test(int_set, 0);
container_test(int_set2, 0);
container_test(set, assignable);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Test unordered_multiset.\n";
boost::unordered_multiset<int> int_multiset;
boost::unordered_multiset<int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<int> >
int_multiset2;
boost::unordered_multiset<test::minimal::assignable,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<test::minimal::assignable> >
multiset;
container_test(int_multiset, 0);
container_test(int_multiset2, 0);
container_test(multiset, assignable);
}
UNORDERED_AUTO_TEST (equality_tests) {
typedef test::minimal::copy_constructible_equality_comparable value_type;
boost::unordered_set<int> int_set;
boost::unordered_set<int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<int> >
int_set2;
boost::unordered_set<test::minimal::copy_constructible_equality_comparable,
test::minimal::hash<test::minimal::copy_constructible_equality_comparable>,
test::minimal::equal_to<
test::minimal::copy_constructible_equality_comparable>,
test::minimal::allocator<value_type> >
set;
equality_test(int_set);
equality_test(int_set2);
equality_test(set);
boost::unordered_multiset<int> int_multiset;
boost::unordered_multiset<int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<int> >
int_multiset2;
boost::unordered_multiset<
test::minimal::copy_constructible_equality_comparable,
test::minimal::hash<test::minimal::copy_constructible_equality_comparable>,
test::minimal::equal_to<
test::minimal::copy_constructible_equality_comparable>,
test::minimal::allocator<value_type> >
multiset;
equality_test(int_multiset);
equality_test(int_multiset2);
equality_test(multiset);
}
UNORDERED_AUTO_TEST (test1) {
boost::hash<int> hash;
std::equal_to<int> equal_to;
int value = 0;
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Test unordered_set." << std::endl;
boost::unordered_set<int> set;
boost::unordered_set<int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<int> >
set2;
unordered_unique_test(set, value);
unordered_set_test(set, value);
unordered_copyable_test(set, value, value, hash, equal_to);
unordered_unique_test(set2, value);
unordered_set_test(set2, value);
unordered_copyable_test(set2, value, value, hash, equal_to);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Test unordered_multiset." << std::endl;
boost::unordered_multiset<int> multiset;
boost::unordered_multiset<int, boost::hash<int>, std::equal_to<int>,
test::minimal::cxx11_allocator<int> >
multiset2;
unordered_equivalent_test(multiset, value);
unordered_set_test(multiset, value);
unordered_copyable_test(multiset, value, value, hash, equal_to);
unordered_equivalent_test(multiset2, value);
unordered_set_test(multiset2, value);
unordered_copyable_test(multiset2, value, value, hash, equal_to);
}
UNORDERED_AUTO_TEST (test2) {
test::minimal::constructor_param x;
test::minimal::assignable assignable(x);
test::minimal::copy_constructible copy_constructible(x);
test::minimal::hash<test::minimal::assignable> hash(x);
test::minimal::equal_to<test::minimal::assignable> equal_to(x);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Test unordered_set.\n";
boost::unordered_set<test::minimal::assignable,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<test::minimal::assignable> >
set;
unordered_unique_test(set, assignable);
unordered_set_test(set, assignable);
unordered_copyable_test(set, assignable, assignable, hash, equal_to);
unordered_set_member_test(set, assignable);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Test unordered_multiset.\n";
boost::unordered_multiset<test::minimal::assignable,
test::minimal::hash<test::minimal::assignable>,
test::minimal::equal_to<test::minimal::assignable>,
test::minimal::allocator<test::minimal::assignable> >
multiset;
unordered_equivalent_test(multiset, assignable);
unordered_set_test(multiset, assignable);
unordered_copyable_test(multiset, assignable, assignable, hash, equal_to);
unordered_set_member_test(multiset, assignable);
}
UNORDERED_AUTO_TEST (movable1_tests) {
test::minimal::constructor_param x;
test::minimal::movable1 movable1(x);
test::minimal::hash<test::minimal::movable1> hash(x);
test::minimal::equal_to<test::minimal::movable1> equal_to(x);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Test unordered_set.\n";
boost::unordered_set<test::minimal::movable1,
test::minimal::hash<test::minimal::movable1>,
test::minimal::equal_to<test::minimal::movable1>,
test::minimal::allocator<test::minimal::movable1> >
set;
// unordered_unique_test(set, movable1);
unordered_set_test(set, movable1);
unordered_movable_test(set, movable1, movable1, hash, equal_to);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Test unordered_multiset.\n";
boost::unordered_multiset<test::minimal::movable1,
test::minimal::hash<test::minimal::movable1>,
test::minimal::equal_to<test::minimal::movable1>,
test::minimal::allocator<test::minimal::movable1> >
multiset;
// unordered_equivalent_test(multiset, movable1);
unordered_set_test(multiset, movable1);
unordered_movable_test(multiset, movable1, movable1, hash, equal_to);
}
UNORDERED_AUTO_TEST (movable2_tests) {
test::minimal::constructor_param x;
test::minimal::movable2 movable2(x);
test::minimal::hash<test::minimal::movable2> hash(x);
test::minimal::equal_to<test::minimal::movable2> equal_to(x);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Test unordered_set.\n";
boost::unordered_set<test::minimal::movable2,
test::minimal::hash<test::minimal::movable2>,
test::minimal::equal_to<test::minimal::movable2>,
test::minimal::allocator<test::minimal::movable2> >
set;
// unordered_unique_test(set, movable2);
unordered_set_test(set, movable2);
unordered_movable_test(set, movable2, movable2, hash, equal_to);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Test unordered_multiset.\n";
boost::unordered_multiset<test::minimal::movable2,
test::minimal::hash<test::minimal::movable2>,
test::minimal::equal_to<test::minimal::movable2>,
test::minimal::allocator<test::minimal::movable2> >
multiset;
// unordered_equivalent_test(multiset, movable2);
unordered_set_test(multiset, movable2);
unordered_movable_test(multiset, movable2, movable2, hash, equal_to);
}
UNORDERED_AUTO_TEST (destructible_tests) {
test::minimal::constructor_param x;
test::minimal::destructible destructible(x);
test::minimal::hash<test::minimal::destructible> hash(x);
test::minimal::equal_to<test::minimal::destructible> equal_to(x);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Test unordered_set.\n";
boost::unordered_set<test::minimal::destructible,
test::minimal::hash<test::minimal::destructible>,
test::minimal::equal_to<test::minimal::destructible> >
set;
unordered_destructible_test(set);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Test unordered_multiset.\n";
boost::unordered_multiset<test::minimal::destructible,
test::minimal::hash<test::minimal::destructible>,
test::minimal::equal_to<test::minimal::destructible> >
multiset;
unordered_destructible_test(multiset);
}
// Test for ambiguity when using key convertible from iterator
// See LWG2059
struct lwg2059_key
{
int value;
template <typename T> lwg2059_key(T v) : value(v) {}
};
std::size_t hash_value(lwg2059_key x)
{
return static_cast<std::size_t>(x.value);
}
bool operator==(lwg2059_key x, lwg2059_key y) { return x.value == y.value; }
UNORDERED_AUTO_TEST (lwg2059) {
{
boost::unordered_set<lwg2059_key> x;
x.emplace(lwg2059_key(10));
x.erase(x.begin());
}
{
boost::unordered_multiset<lwg2059_key> x;
x.emplace(lwg2059_key(10));
x.erase(x.begin());
}
}
RUN_TESTS()

View File

@@ -0,0 +1,840 @@
// Copyright 2005-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#if defined(BOOST_MSVC)
#pragma warning(push)
#pragma warning(disable : 4100) // unreferenced formal parameter
#pragma warning(disable : 4610) // class can never be instantiated
#pragma warning(disable : 4510) // default constructor could not be generated
#endif
#include <boost/concept_check.hpp>
#if defined(BOOST_MSVC)
#pragma warning(pop)
#endif
#include "../helpers/check_return_type.hpp"
#include <boost/iterator/iterator_traits.hpp>
#include <boost/limits.hpp>
#include <boost/predef.h>
#include <boost/static_assert.hpp>
#include <boost/type_traits/cv_traits.hpp>
#include <boost/type_traits/is_convertible.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/utility/swap.hpp>
typedef long double comparison_type;
template <class T> void sink(T const&) {}
template <class T> T rvalue(T const& v) { return v; }
template <class T> T rvalue_default() { return T(); }
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
template <class T> T implicit_construct() { return {}; }
#else
template <class T> int implicit_construct()
{
T x;
sink(x);
return 0;
}
#endif
#if !defined(BOOST_NO_CXX11_NOEXCEPT)
#define TEST_NOEXCEPT_EXPR(x) BOOST_STATIC_ASSERT((BOOST_NOEXCEPT_EXPR(x)));
#else
#define TEST_NOEXCEPT_EXPR(x)
#endif
template <class X, class T> void container_test(X& r, T const&)
{
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
typedef BOOST_DEDUCED_TYPENAME X::const_iterator const_iterator;
typedef BOOST_DEDUCED_TYPENAME X::difference_type difference_type;
typedef BOOST_DEDUCED_TYPENAME X::size_type size_type;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_value<iterator>::type
iterator_value_type;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_value<const_iterator>::type
const_iterator_value_type;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_difference<iterator>::type
iterator_difference_type;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_difference<
const_iterator>::type const_iterator_difference_type;
typedef BOOST_DEDUCED_TYPENAME X::value_type value_type;
typedef BOOST_DEDUCED_TYPENAME X::reference reference;
typedef BOOST_DEDUCED_TYPENAME X::const_reference const_reference;
typedef BOOST_DEDUCED_TYPENAME X::node_type node_type;
typedef BOOST_DEDUCED_TYPENAME X::allocator_type allocator_type;
// value_type
BOOST_STATIC_ASSERT((boost::is_same<T, value_type>::value));
boost::function_requires<boost::CopyConstructibleConcept<X> >();
// reference_type / const_reference_type
BOOST_STATIC_ASSERT((boost::is_same<T&, reference>::value));
BOOST_STATIC_ASSERT((boost::is_same<T const&, const_reference>::value));
// iterator
boost::function_requires<boost::InputIteratorConcept<iterator> >();
BOOST_STATIC_ASSERT((boost::is_same<T, iterator_value_type>::value));
BOOST_STATIC_ASSERT((boost::is_convertible<iterator, const_iterator>::value));
// const_iterator
boost::function_requires<boost::InputIteratorConcept<const_iterator> >();
BOOST_STATIC_ASSERT((boost::is_same<T, const_iterator_value_type>::value));
// node_type
BOOST_STATIC_ASSERT((boost::is_same<allocator_type,
BOOST_DEDUCED_TYPENAME node_type::allocator_type>::value));
// difference_type
BOOST_STATIC_ASSERT(std::numeric_limits<difference_type>::is_signed);
BOOST_STATIC_ASSERT(std::numeric_limits<difference_type>::is_integer);
BOOST_STATIC_ASSERT(
(boost::is_same<difference_type, iterator_difference_type>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<difference_type, const_iterator_difference_type>::value));
// size_type
BOOST_STATIC_ASSERT(!std::numeric_limits<size_type>::is_signed);
BOOST_STATIC_ASSERT(std::numeric_limits<size_type>::is_integer);
// size_type can represent any non-negative value type of difference_type
// I'm not sure about either of these tests...
size_type max_diff =
static_cast<size_type>((std::numeric_limits<difference_type>::max)());
difference_type converted_diff(static_cast<difference_type>(max_diff));
BOOST_TEST((std::numeric_limits<difference_type>::max)() == converted_diff);
BOOST_TEST(
static_cast<comparison_type>((std::numeric_limits<size_type>::max)()) >
static_cast<comparison_type>(
(std::numeric_limits<difference_type>::max)()));
// Constructors
// I don't test the runtime post-conditions here.
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
// It isn't specified in the container requirements that the no argument
// constructor is implicit, but it is defined that way in the concrete
// container specification.
X u_implicit = {};
sink(u_implicit);
#endif
X u;
BOOST_TEST(u.size() == 0);
BOOST_TEST(X().size() == 0);
X a, b;
X a_const;
sink(X(a));
X u2(a);
X u3 = a;
X u4(rvalue(a_const));
X u5 = rvalue(a_const);
a.swap(b);
boost::swap(a, b);
test::check_return_type<X>::equals_ref(r = a);
// Allocator
test::check_return_type<allocator_type>::equals(a_const.get_allocator());
allocator_type m = a.get_allocator();
sink(X(m));
X c(m);
sink(X(a_const, m));
X c2(a_const, m);
sink(X(rvalue(a_const), m));
X c3(rvalue(a_const), m);
// node_type
implicit_construct<node_type const>();
#if !BOOST_COMP_GNUC || BOOST_COMP_GNUC >= BOOST_VERSION_NUMBER(4, 8, 0)
TEST_NOEXCEPT_EXPR(node_type());
#endif
node_type n1;
node_type n2(rvalue_default<node_type>());
#if !BOOST_COMP_GNUC || BOOST_COMP_GNUC >= BOOST_VERSION_NUMBER(4, 8, 0)
TEST_NOEXCEPT_EXPR(node_type(boost::move(n1)));
#endif
node_type n3;
n3 = boost::move(n2);
n1.swap(n3);
swap(n1, n3);
// TODO: noexcept for swap?
// value, key, mapped tests in map and set specific testing.
node_type const n_const;
BOOST_TEST(n_const ? 0 : 1);
TEST_NOEXCEPT_EXPR(n_const ? 0 : 1);
test::check_return_type<bool>::equals(!n_const);
test::check_return_type<bool>::equals(n_const.empty());
TEST_NOEXCEPT_EXPR(!n_const);
TEST_NOEXCEPT_EXPR(n_const.empty());
// Avoid unused variable warnings:
sink(u);
sink(u2);
sink(u3);
sink(u4);
sink(u5);
sink(c);
sink(c2);
sink(c3);
}
template <class X> void unordered_destructible_test(X&)
{
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
typedef BOOST_DEDUCED_TYPENAME X::const_iterator const_iterator;
typedef BOOST_DEDUCED_TYPENAME X::size_type size_type;
X x1;
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
X x2(rvalue_default<X>());
X x3 = rvalue_default<X>();
// This can only be done if propagate_on_container_move_assignment::value
// is true.
// x2 = rvalue_default<X>();
#endif
X* ptr = new X();
X& a1 = *ptr;
(&a1)->~X();
::operator delete((void*)(&a1));
X a, b;
X const a_const;
test::check_return_type<iterator>::equals(a.begin());
test::check_return_type<const_iterator>::equals(a_const.begin());
test::check_return_type<const_iterator>::equals(a.cbegin());
test::check_return_type<const_iterator>::equals(a_const.cbegin());
test::check_return_type<iterator>::equals(a.end());
test::check_return_type<const_iterator>::equals(a_const.end());
test::check_return_type<const_iterator>::equals(a.cend());
test::check_return_type<const_iterator>::equals(a_const.cend());
a.swap(b);
boost::swap(a, b);
test::check_return_type<size_type>::equals(a.size());
test::check_return_type<size_type>::equals(a.max_size());
test::check_return_type<bool>::convertible(a.empty());
// Allocator
typedef BOOST_DEDUCED_TYPENAME X::allocator_type allocator_type;
test::check_return_type<allocator_type>::equals(a_const.get_allocator());
}
template <class X, class Key> void unordered_set_test(X& r, Key const&)
{
typedef BOOST_DEDUCED_TYPENAME X::value_type value_type;
typedef BOOST_DEDUCED_TYPENAME X::key_type key_type;
BOOST_STATIC_ASSERT((boost::is_same<value_type, key_type>::value));
// iterator pointer / const_pointer_type
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
typedef BOOST_DEDUCED_TYPENAME X::const_iterator const_iterator;
typedef BOOST_DEDUCED_TYPENAME X::local_iterator local_iterator;
typedef BOOST_DEDUCED_TYPENAME X::const_local_iterator const_local_iterator;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<iterator>::type
iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<const_iterator>::type
const_iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<local_iterator>::type
local_iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<
const_local_iterator>::type const_local_iterator_pointer;
BOOST_STATIC_ASSERT(
(boost::is_same<value_type const*, iterator_pointer>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<value_type const*, const_iterator_pointer>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<value_type const*, local_iterator_pointer>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<value_type const*, const_local_iterator_pointer>::value));
typedef BOOST_DEDUCED_TYPENAME X::node_type node_type;
typedef BOOST_DEDUCED_TYPENAME node_type::value_type node_value_type;
BOOST_STATIC_ASSERT((boost::is_same<value_type, node_value_type>::value));
// Call node_type functions.
test::minimal::constructor_param v;
Key k_lvalue(v);
r.emplace(boost::move(k_lvalue));
node_type n1 = r.extract(r.begin());
test::check_return_type<value_type>::equals_ref(n1.value());
}
template <class X, class Key, class T>
void unordered_map_test(X& r, Key const& k, T const& v)
{
typedef BOOST_DEDUCED_TYPENAME X::value_type value_type;
typedef BOOST_DEDUCED_TYPENAME X::key_type key_type;
BOOST_STATIC_ASSERT(
(boost::is_same<value_type, std::pair<key_type const, T> >::value));
// iterator pointer / const_pointer_type
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
typedef BOOST_DEDUCED_TYPENAME X::const_iterator const_iterator;
typedef BOOST_DEDUCED_TYPENAME X::local_iterator local_iterator;
typedef BOOST_DEDUCED_TYPENAME X::const_local_iterator const_local_iterator;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<iterator>::type
iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<const_iterator>::type
const_iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<local_iterator>::type
local_iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<
const_local_iterator>::type const_local_iterator_pointer;
BOOST_STATIC_ASSERT((boost::is_same<value_type*, iterator_pointer>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<value_type const*, const_iterator_pointer>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<value_type*, local_iterator_pointer>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<value_type const*, const_local_iterator_pointer>::value));
typedef BOOST_DEDUCED_TYPENAME X::node_type node_type;
typedef BOOST_DEDUCED_TYPENAME node_type::key_type node_key_type;
typedef BOOST_DEDUCED_TYPENAME node_type::mapped_type node_mapped_type;
BOOST_STATIC_ASSERT((boost::is_same<Key, node_key_type>::value));
BOOST_STATIC_ASSERT((boost::is_same<T, node_mapped_type>::value));
// Superfluous,but just to make sure.
BOOST_STATIC_ASSERT((!boost::is_const<node_key_type>::value));
// Calling functions
r.insert(std::pair<Key const, T>(k, v));
r.insert(r.begin(), std::pair<Key const, T>(k, v));
std::pair<Key const, T> const value(k, v);
r.insert(value);
r.insert(r.end(), value);
Key k_lvalue(k);
T v_lvalue(v);
// Emplace
r.emplace(k, v);
r.emplace(k_lvalue, v_lvalue);
r.emplace(rvalue(k), rvalue(v));
r.emplace(boost::unordered::piecewise_construct, boost::make_tuple(k),
boost::make_tuple(v));
// Emplace with hint
r.emplace_hint(r.begin(), k, v);
r.emplace_hint(r.begin(), k_lvalue, v_lvalue);
r.emplace_hint(r.begin(), rvalue(k), rvalue(v));
r.emplace_hint(r.begin(), boost::unordered::piecewise_construct,
boost::make_tuple(k), boost::make_tuple(v));
// Extract
test::check_return_type<node_type>::equals(r.extract(r.begin()));
r.emplace(k, v);
test::check_return_type<node_type>::equals(r.extract(k));
r.emplace(k, v);
node_type n1 = r.extract(r.begin());
test::check_return_type<key_type>::equals_ref(n1.key());
test::check_return_type<T>::equals_ref(n1.mapped());
node_type n2 = boost::move(n1);
r.insert(boost::move(n2));
r.insert(r.extract(r.begin()));
n2 = r.extract(r.begin());
r.insert(r.begin(), boost::move(n2));
r.insert(r.end(), r.extract(r.begin()));
node_type n = r.extract(r.begin());
test::check_return_type<node_key_type>::equals_ref(n.key());
test::check_return_type<node_mapped_type>::equals_ref(n.mapped());
}
template <class X> void equality_test(X& r)
{
X const a = r, b = r;
test::check_return_type<bool>::equals(a == b);
test::check_return_type<bool>::equals(a != b);
test::check_return_type<bool>::equals(boost::operator==(a, b));
test::check_return_type<bool>::equals(boost::operator!=(a, b));
}
template <class X, class T> void unordered_unique_test(X& r, T const& t)
{
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
test::check_return_type<std::pair<iterator, bool> >::equals(r.insert(t));
test::check_return_type<std::pair<iterator, bool> >::equals(r.emplace(t));
typedef BOOST_DEDUCED_TYPENAME X::node_type node_type;
typedef BOOST_DEDUCED_TYPENAME X::insert_return_type insert_return_type;
// insert_return_type
// TODO;
// boost::function_requires<
// boost::MoveConstructibleConcept<insert_return_type>
// >();
// TODO;
// boost::function_requires<
// boost::MoveAssignableConcept<insert_return_type>
// >();
boost::function_requires<
boost::DefaultConstructibleConcept<insert_return_type> >();
// TODO:
// boost::function_requires<
// boost::DestructibleConcept<insert_return_type>
// >();
insert_return_type insert_return, insert_return2;
test::check_return_type<bool>::equals(insert_return.inserted);
test::check_return_type<iterator>::equals(insert_return.position);
test::check_return_type<node_type>::equals_ref(insert_return.node);
boost::swap(insert_return, insert_return2);
}
template <class X, class T> void unordered_equivalent_test(X& r, T const& t)
{
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
test::check_return_type<iterator>::equals(r.insert(t));
test::check_return_type<iterator>::equals(r.emplace(t));
}
template <class X, class Key, class T>
void unordered_map_functions(X&, Key const& k, T const& v)
{
typedef BOOST_DEDUCED_TYPENAME X::mapped_type mapped_type;
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
X a;
test::check_return_type<mapped_type>::equals_ref(a[k]);
test::check_return_type<mapped_type>::equals_ref(a[rvalue(k)]);
test::check_return_type<mapped_type>::equals_ref(a.at(k));
test::check_return_type<std::pair<iterator, bool> >::equals(
a.try_emplace(k, v));
test::check_return_type<std::pair<iterator, bool> >::equals(
a.try_emplace(rvalue(k), v));
test::check_return_type<iterator>::equals(a.try_emplace(a.begin(), k, v));
test::check_return_type<iterator>::equals(
a.try_emplace(a.begin(), rvalue(k), v));
test::check_return_type<std::pair<iterator, bool> >::equals(
a.insert_or_assign(k, v));
test::check_return_type<std::pair<iterator, bool> >::equals(
a.insert_or_assign(rvalue(k), v));
test::check_return_type<iterator>::equals(
a.insert_or_assign(a.begin(), k, v));
test::check_return_type<iterator>::equals(
a.insert_or_assign(a.begin(), rvalue(k), v));
X const b = a;
test::check_return_type<mapped_type const>::equals_ref(b.at(k));
}
template <class X, class Key, class Hash, class Pred>
void unordered_test(X& x, Key& k, Hash& hf, Pred& eq)
{
unordered_destructible_test(x);
typedef BOOST_DEDUCED_TYPENAME X::key_type key_type;
typedef BOOST_DEDUCED_TYPENAME X::hasher hasher;
typedef BOOST_DEDUCED_TYPENAME X::key_equal key_equal;
typedef BOOST_DEDUCED_TYPENAME X::size_type size_type;
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
typedef BOOST_DEDUCED_TYPENAME X::const_iterator const_iterator;
typedef BOOST_DEDUCED_TYPENAME X::local_iterator local_iterator;
typedef BOOST_DEDUCED_TYPENAME X::const_local_iterator const_local_iterator;
typedef BOOST_DEDUCED_TYPENAME boost::BOOST_ITERATOR_CATEGORY<iterator>::type
iterator_category;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_difference<iterator>::type
iterator_difference;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<iterator>::type
iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_reference<iterator>::type
iterator_reference;
typedef BOOST_DEDUCED_TYPENAME boost::BOOST_ITERATOR_CATEGORY<
local_iterator>::type local_iterator_category;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_difference<local_iterator>::type local_iterator_difference;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<local_iterator>::type
local_iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_reference<local_iterator>::type
local_iterator_reference;
typedef BOOST_DEDUCED_TYPENAME boost::BOOST_ITERATOR_CATEGORY<
const_iterator>::type const_iterator_category;
typedef BOOST_DEDUCED_TYPENAME
boost::iterator_difference<const_iterator>::type const_iterator_difference;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<const_iterator>::type
const_iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_reference<const_iterator>::type
const_iterator_reference;
typedef BOOST_DEDUCED_TYPENAME boost::BOOST_ITERATOR_CATEGORY<
const_local_iterator>::type const_local_iterator_category;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_difference<
const_local_iterator>::type const_local_iterator_difference;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_pointer<
const_local_iterator>::type const_local_iterator_pointer;
typedef BOOST_DEDUCED_TYPENAME boost::iterator_reference<
const_local_iterator>::type const_local_iterator_reference;
typedef BOOST_DEDUCED_TYPENAME X::allocator_type allocator_type;
BOOST_STATIC_ASSERT((boost::is_same<Key, key_type>::value));
// boost::function_requires<boost::CopyConstructibleConcept<key_type> >();
// boost::function_requires<boost::AssignableConcept<key_type> >();
BOOST_STATIC_ASSERT((boost::is_same<Hash, hasher>::value));
test::check_return_type<std::size_t>::equals(hf(k));
BOOST_STATIC_ASSERT((boost::is_same<Pred, key_equal>::value));
test::check_return_type<bool>::convertible(eq(k, k));
boost::function_requires<boost::InputIteratorConcept<local_iterator> >();
BOOST_STATIC_ASSERT(
(boost::is_same<local_iterator_category, iterator_category>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<local_iterator_difference, iterator_difference>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<local_iterator_pointer, iterator_pointer>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<local_iterator_reference, iterator_reference>::value));
boost::function_requires<
boost::InputIteratorConcept<const_local_iterator> >();
BOOST_STATIC_ASSERT((boost::is_same<const_local_iterator_category,
const_iterator_category>::value));
BOOST_STATIC_ASSERT((boost::is_same<const_local_iterator_difference,
const_iterator_difference>::value));
BOOST_STATIC_ASSERT((boost::is_same<const_local_iterator_pointer,
const_iterator_pointer>::value));
BOOST_STATIC_ASSERT((boost::is_same<const_local_iterator_reference,
const_iterator_reference>::value));
X a;
allocator_type m = a.get_allocator();
// Constructors
X(10, hf, eq);
X a1(10, hf, eq);
X(10, hf);
X a2(10, hf);
X(10);
X a3(10);
X();
X a4;
X(10, hf, eq, m);
X a1a(10, hf, eq, m);
X(10, hf, m);
X a2a(10, hf, m);
X(10, m);
X a3a(10, m);
(X(m));
X a4a(m);
test::check_return_type<size_type>::equals(a.erase(k));
const_iterator q1 = a.cbegin(), q2 = a.cend();
test::check_return_type<iterator>::equals(a.erase(q1, q2));
TEST_NOEXCEPT_EXPR(a.clear());
a.clear();
X const b;
test::check_return_type<hasher>::equals(b.hash_function());
test::check_return_type<key_equal>::equals(b.key_eq());
test::check_return_type<iterator>::equals(a.find(k));
test::check_return_type<const_iterator>::equals(b.find(k));
test::check_return_type<size_type>::equals(b.count(k));
test::check_return_type<std::pair<iterator, iterator> >::equals(
a.equal_range(k));
test::check_return_type<std::pair<const_iterator, const_iterator> >::equals(
b.equal_range(k));
test::check_return_type<size_type>::equals(b.bucket_count());
test::check_return_type<size_type>::equals(b.max_bucket_count());
test::check_return_type<size_type>::equals(b.bucket(k));
test::check_return_type<size_type>::equals(b.bucket_size(0));
test::check_return_type<local_iterator>::equals(a.begin(0));
test::check_return_type<const_local_iterator>::equals(b.begin(0));
test::check_return_type<local_iterator>::equals(a.end(0));
test::check_return_type<const_local_iterator>::equals(b.end(0));
test::check_return_type<const_local_iterator>::equals(a.cbegin(0));
test::check_return_type<const_local_iterator>::equals(b.cbegin(0));
test::check_return_type<const_local_iterator>::equals(a.cend(0));
test::check_return_type<const_local_iterator>::equals(b.cend(0));
test::check_return_type<float>::equals(b.load_factor());
test::check_return_type<float>::equals(b.max_load_factor());
a.max_load_factor((float)2.0);
a.rehash(100);
a.merge(a2);
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
a.merge(rvalue_default<X>());
#endif
// Avoid unused variable warnings:
sink(a);
sink(a1);
sink(a2);
sink(a3);
sink(a4);
sink(a1a);
sink(a2a);
sink(a3a);
sink(a4a);
}
template <class X, class Key, class T, class Hash, class Pred>
void unordered_copyable_test(X& x, Key& k, T& t, Hash& hf, Pred& eq)
{
unordered_test(x, k, hf, eq);
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
typedef BOOST_DEDUCED_TYPENAME X::const_iterator const_iterator;
typedef BOOST_DEDUCED_TYPENAME X::allocator_type allocator_type;
X a;
allocator_type m = a.get_allocator();
BOOST_DEDUCED_TYPENAME X::value_type* i = 0;
BOOST_DEDUCED_TYPENAME X::value_type* j = 0;
// Constructors
X(i, j, 10, hf, eq);
X a5(i, j, 10, hf, eq);
X(i, j, 10, hf);
X a6(i, j, 10, hf);
X(i, j, 10);
X a7(i, j, 10);
X(i, j);
X a8(i, j);
X(i, j, 10, hf, eq, m);
X a5a(i, j, 10, hf, eq, m);
X(i, j, 10, hf, m);
X a6a(i, j, 10, hf, m);
X(i, j, 10, m);
X a7a(i, j, 10, m);
// Not specified for some reason (maybe ambiguity with another constructor?)
// X(i, j, m);
// X a8a(i, j, m);
// sink(a8a);
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
std::size_t min_buckets = 10;
X({t});
X({t}, min_buckets);
X({t}, min_buckets, hf);
X({t}, min_buckets, hf, eq);
// X({t}, m);
X({t}, min_buckets, m);
X({t}, min_buckets, hf, m);
X({t}, min_buckets, hf, eq, m);
#endif
X const b;
sink(X(b));
X a9(b);
a = b;
sink(X(b, m));
X a9a(b, m);
X b1;
b1.insert(t);
X a9b(b1);
sink(a9b);
X a9c(b1, m);
sink(a9c);
const_iterator q = a.cbegin();
test::check_return_type<iterator>::equals(a.insert(q, t));
test::check_return_type<iterator>::equals(a.emplace_hint(q, t));
a.insert(i, j);
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
std::initializer_list<T> list = {t};
a.insert(list);
a.insert({t, t, t});
#if !BOOST_WORKAROUND(BOOST_MSVC, < 1900) && \
(!defined(__clang__) || __clang_major__ >= 4 || \
(__clang_major__ == 3 && __clang_minor__ >= 4))
a.insert({});
a.insert({t});
a.insert({t, t});
#endif
#endif
X a10;
a10.insert(t);
q = a10.cbegin();
test::check_return_type<iterator>::equals(a10.erase(q));
// Avoid unused variable warnings:
sink(a);
sink(a5);
sink(a6);
sink(a7);
sink(a8);
sink(a9);
sink(a5a);
sink(a6a);
sink(a7a);
sink(a9a);
typedef BOOST_DEDUCED_TYPENAME X::node_type node_type;
typedef BOOST_DEDUCED_TYPENAME X::allocator_type allocator_type;
node_type const n_const = a.extract(a.begin());
test::check_return_type<allocator_type>::equals(n_const.get_allocator());
}
template <class X, class Key, class T, class Hash, class Pred>
void unordered_movable_test(X& x, Key& k, T& /* t */, Hash& hf, Pred& eq)
{
unordered_test(x, k, hf, eq);
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
typedef BOOST_DEDUCED_TYPENAME X::const_iterator const_iterator;
typedef BOOST_DEDUCED_TYPENAME X::allocator_type allocator_type;
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
X x1(rvalue_default<X>());
X x2(boost::move(x1));
x1 = rvalue_default<X>();
x2 = boost::move(x1);
#endif
X a;
allocator_type m = a.get_allocator();
test::minimal::constructor_param* i = 0;
test::minimal::constructor_param* j = 0;
// Constructors
X(i, j, 10, hf, eq);
X a5(i, j, 10, hf, eq);
X(i, j, 10, hf);
X a6(i, j, 10, hf);
X(i, j, 10);
X a7(i, j, 10);
X(i, j);
X a8(i, j);
X(i, j, 10, hf, eq, m);
X a5a(i, j, 10, hf, eq, m);
X(i, j, 10, hf, m);
X a6a(i, j, 10, hf, m);
X(i, j, 10, m);
X a7a(i, j, 10, m);
// Not specified for some reason (maybe ambiguity with another constructor?)
// X(i, j, m);
// X a8a(i, j, m);
// sink(a8a);
const_iterator q = a.cbegin();
test::minimal::constructor_param v;
a.emplace(v);
test::check_return_type<iterator>::equals(a.emplace_hint(q, v));
T v1(v);
a.emplace(boost::move(v1));
T v2(v);
a.insert(boost::move(v2));
T v3(v);
test::check_return_type<iterator>::equals(a.emplace_hint(q, boost::move(v3)));
T v4(v);
test::check_return_type<iterator>::equals(a.insert(q, boost::move(v4)));
a.insert(i, j);
X a10;
T v5(v);
a10.insert(boost::move(v5));
q = a10.cbegin();
test::check_return_type<iterator>::equals(a10.erase(q));
// Avoid unused variable warnings:
sink(a);
sink(a5);
sink(a6);
sink(a7);
sink(a8);
sink(a5a);
sink(a6a);
sink(a7a);
sink(a10);
}
template <class X, class T> void unordered_set_member_test(X& x, T& t)
{
X x1(x);
x1.insert(t);
x1.begin()->dummy_member();
x1.cbegin()->dummy_member();
}
template <class X, class T> void unordered_map_member_test(X& x, T& t)
{
X x1(x);
x1.insert(t);
x1.begin()->first.dummy_member();
x1.cbegin()->first.dummy_member();
x1.begin()->second.dummy_member();
x1.cbegin()->second.dummy_member();
}

View File

@@ -0,0 +1,449 @@
// Copyright 2006-2010 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include "../helpers/test.hpp"
#include "../objects/test.hpp"
#include "../helpers/random_values.hpp"
#include "../helpers/tracker.hpp"
#include "../helpers/equivalent.hpp"
#include "../helpers/input_iterator.hpp"
#include "../helpers/invariants.hpp"
namespace constructor_tests {
test::seed_t initialize_seed(356730);
template <class T>
void constructor_tests1(T*, test::random_generator generator)
{
BOOST_DEDUCED_TYPENAME T::hasher hf;
BOOST_DEDUCED_TYPENAME T::key_equal eq;
BOOST_DEDUCED_TYPENAME T::allocator_type al;
UNORDERED_SUB_TEST("Construct 1")
{
test::check_instances check_;
T x(0, hf, eq);
BOOST_TEST(x.empty());
BOOST_TEST(test::equivalent(x.hash_function(), hf));
BOOST_TEST(test::equivalent(x.key_eq(), eq));
BOOST_TEST(test::equivalent(x.get_allocator(), al));
test::check_equivalent_keys(x);
}
UNORDERED_SUB_TEST("Construct 2")
{
test::check_instances check_;
T x(100, hf);
BOOST_TEST(x.empty());
BOOST_TEST(x.bucket_count() >= 100);
BOOST_TEST(test::equivalent(x.hash_function(), hf));
BOOST_TEST(test::equivalent(x.key_eq(), eq));
BOOST_TEST(test::equivalent(x.get_allocator(), al));
test::check_equivalent_keys(x);
}
UNORDERED_SUB_TEST("Construct 3")
{
test::check_instances check_;
T x(2000);
BOOST_TEST(x.empty());
BOOST_TEST(x.bucket_count() >= 2000);
BOOST_TEST(test::equivalent(x.hash_function(), hf));
BOOST_TEST(test::equivalent(x.key_eq(), eq));
BOOST_TEST(test::equivalent(x.get_allocator(), al));
test::check_equivalent_keys(x);
}
UNORDERED_SUB_TEST("Construct 4")
{
test::check_instances check_;
T x;
BOOST_TEST(x.empty());
BOOST_TEST(test::equivalent(x.hash_function(), hf));
BOOST_TEST(test::equivalent(x.key_eq(), eq));
BOOST_TEST(test::equivalent(x.get_allocator(), al));
test::check_equivalent_keys(x);
}
UNORDERED_SUB_TEST("Construct 5")
{
test::check_instances check_;
test::random_values<T> v(1000, generator);
T x(v.begin(), v.end(), 10000, hf, eq);
BOOST_TEST(x.bucket_count() >= 10000);
BOOST_TEST(test::equivalent(x.hash_function(), hf));
BOOST_TEST(test::equivalent(x.key_eq(), eq));
BOOST_TEST(test::equivalent(x.get_allocator(), al));
test::check_container(x, v);
test::check_equivalent_keys(x);
}
UNORDERED_SUB_TEST("Construct 6")
{
test::check_instances check_;
test::random_values<T> v(10, generator);
T x(v.begin(), v.end(), 10000, hf);
BOOST_TEST(x.bucket_count() >= 10000);
BOOST_TEST(test::equivalent(x.hash_function(), hf));
BOOST_TEST(test::equivalent(x.key_eq(), eq));
BOOST_TEST(test::equivalent(x.get_allocator(), al));
test::check_container(x, v);
test::check_equivalent_keys(x);
}
UNORDERED_SUB_TEST("Construct 7")
{
test::check_instances check_;
test::random_values<T> v(100, generator);
T x(v.begin(), v.end(), 100);
BOOST_TEST(x.bucket_count() >= 100);
BOOST_TEST(test::equivalent(x.hash_function(), hf));
BOOST_TEST(test::equivalent(x.key_eq(), eq));
BOOST_TEST(test::equivalent(x.get_allocator(), al));
test::check_container(x, v);
test::check_equivalent_keys(x);
}
UNORDERED_SUB_TEST("Construct 8")
{
test::check_instances check_;
test::random_values<T> v(1, generator);
T x(v.begin(), v.end());
BOOST_TEST(test::equivalent(x.hash_function(), hf));
BOOST_TEST(test::equivalent(x.key_eq(), eq));
BOOST_TEST(test::equivalent(x.get_allocator(), al));
test::check_container(x, v);
test::check_equivalent_keys(x);
}
UNORDERED_SUB_TEST("Construct 9")
{
test::check_instances check_;
T x(0, hf, eq, al);
BOOST_TEST(x.empty());
BOOST_TEST(test::equivalent(x.hash_function(), hf));
BOOST_TEST(test::equivalent(x.key_eq(), eq));
BOOST_TEST(test::equivalent(x.get_allocator(), al));
test::check_equivalent_keys(x);
}
UNORDERED_SUB_TEST("Construct 10")
{
test::check_instances check_;
test::random_values<T> v(1000, generator);
T x(v.begin(), v.end(), 10000, hf, eq, al);
BOOST_TEST(x.bucket_count() >= 10000);
BOOST_TEST(test::equivalent(x.hash_function(), hf));
BOOST_TEST(test::equivalent(x.key_eq(), eq));
BOOST_TEST(test::equivalent(x.get_allocator(), al));
test::check_container(x, v);
test::check_equivalent_keys(x);
}
UNORDERED_SUB_TEST("Construct 11")
{
test::check_instances check_;
T x(al);
BOOST_TEST(x.empty());
BOOST_TEST(test::equivalent(x.hash_function(), hf));
BOOST_TEST(test::equivalent(x.key_eq(), eq));
BOOST_TEST(test::equivalent(x.get_allocator(), al));
test::check_equivalent_keys(x);
}
}
template <class T>
void constructor_tests2(T*, test::random_generator const& generator)
{
BOOST_DEDUCED_TYPENAME T::hasher hf;
BOOST_DEDUCED_TYPENAME T::hasher hf1(1);
BOOST_DEDUCED_TYPENAME T::hasher hf2(2);
BOOST_DEDUCED_TYPENAME T::key_equal eq;
BOOST_DEDUCED_TYPENAME T::key_equal eq1(1);
BOOST_DEDUCED_TYPENAME T::key_equal eq2(2);
BOOST_DEDUCED_TYPENAME T::allocator_type al;
BOOST_DEDUCED_TYPENAME T::allocator_type al1(1);
BOOST_DEDUCED_TYPENAME T::allocator_type al2(2);
UNORDERED_SUB_TEST("Construct 1")
{
test::check_instances check_;
T x(10000, hf1, eq1);
BOOST_TEST(x.bucket_count() >= 10000);
BOOST_TEST(test::equivalent(x.hash_function(), hf1));
BOOST_TEST(test::equivalent(x.key_eq(), eq1));
BOOST_TEST(test::equivalent(x.get_allocator(), al));
test::check_equivalent_keys(x);
}
UNORDERED_SUB_TEST("Construct 2")
{
test::check_instances check_;
T x(100, hf1);
BOOST_TEST(x.empty());
BOOST_TEST(x.bucket_count() >= 100);
BOOST_TEST(test::equivalent(x.hash_function(), hf1));
BOOST_TEST(test::equivalent(x.key_eq(), eq));
BOOST_TEST(test::equivalent(x.get_allocator(), al));
test::check_equivalent_keys(x);
}
UNORDERED_SUB_TEST("Construct 3")
{
test::check_instances check_;
test::random_values<T> v(100, generator);
T x(v.begin(), v.end(), 0, hf1, eq1);
BOOST_TEST(test::equivalent(x.hash_function(), hf1));
BOOST_TEST(test::equivalent(x.key_eq(), eq1));
BOOST_TEST(test::equivalent(x.get_allocator(), al));
test::check_container(x, v);
test::check_equivalent_keys(x);
}
UNORDERED_SUB_TEST("Construct 4")
{
test::check_instances check_;
test::random_values<T> v(5, generator);
T x(v.begin(), v.end(), 1000, hf1);
BOOST_TEST(x.bucket_count() >= 1000);
BOOST_TEST(test::equivalent(x.hash_function(), hf1));
BOOST_TEST(test::equivalent(x.key_eq(), eq));
BOOST_TEST(test::equivalent(x.get_allocator(), al));
test::check_container(x, v);
test::check_equivalent_keys(x);
}
UNORDERED_SUB_TEST("Construct 5")
{
test::check_instances check_;
test::random_values<T> v(100, generator);
T x(v.begin(), v.end(), 0, hf, eq, al1);
T y(x.begin(), x.end(), 0, hf1, eq1, al2);
test::check_container(x, v);
test::check_container(y, x);
test::check_equivalent_keys(x);
test::check_equivalent_keys(y);
}
UNORDERED_SUB_TEST("Construct 6")
{
test::check_instances check_;
test::random_values<T> v(100, generator);
T x(v.begin(), v.end(), 0, hf1, eq1);
T y(x.begin(), x.end(), 0, hf, eq);
test::check_container(x, v);
test::check_container(y, x);
test::check_equivalent_keys(x);
test::check_equivalent_keys(y);
}
UNORDERED_SUB_TEST("Construct 7")
{
test::check_instances check_;
test::random_values<T> v(100, generator);
T x(v.begin(), v.end(), 0, hf1, eq1);
T y(x.begin(), x.end(), 0, hf2, eq2);
test::check_container(x, v);
test::check_container(y, x);
test::check_equivalent_keys(x);
test::check_equivalent_keys(y);
}
UNORDERED_SUB_TEST("Construct 8 - from input iterator")
{
test::check_instances check_;
test::random_values<T> v(100, generator);
BOOST_DEDUCED_TYPENAME test::random_values<T>::const_iterator v_begin =
v.begin(),
v_end =
v.end();
T x(test::input_iterator(v_begin), test::input_iterator(v_end), 0, hf1,
eq1);
BOOST_DEDUCED_TYPENAME T::const_iterator x_begin = x.begin(),
x_end = x.end();
T y(test::input_iterator(x_begin), test::input_iterator(x_end), 0, hf2,
eq2);
test::check_container(x, v);
test::check_container(y, x);
test::check_equivalent_keys(x);
test::check_equivalent_keys(y);
}
UNORDERED_SUB_TEST("Construct 8.5 - from copy iterator")
{
test::check_instances check_;
test::random_values<T> v(100, generator);
T x(test::copy_iterator(v.begin()), test::copy_iterator(v.end()), 0, hf1,
eq1);
T y(test::copy_iterator(x.begin()), test::copy_iterator(x.end()), 0, hf2,
eq2);
test::check_container(x, v);
test::check_container(y, x);
test::check_equivalent_keys(x);
test::check_equivalent_keys(y);
}
UNORDERED_SUB_TEST("Construct 9")
{
test::check_instances check_;
test::random_values<T> v(100, generator);
T x(50);
BOOST_TEST(x.bucket_count() >= 50);
x.max_load_factor(10);
BOOST_TEST(x.bucket_count() >= 50);
x.insert(v.begin(), v.end());
BOOST_TEST(x.bucket_count() >= 50);
test::check_container(x, v);
test::check_equivalent_keys(x);
}
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
std::initializer_list<BOOST_DEDUCED_TYPENAME T::value_type> list;
UNORDERED_SUB_TEST("Initializer list construct 1")
{
test::check_instances check_;
T x(list);
BOOST_TEST(x.empty());
BOOST_TEST(test::equivalent(x.hash_function(), hf));
BOOST_TEST(test::equivalent(x.key_eq(), eq));
BOOST_TEST(test::equivalent(x.get_allocator(), al));
}
UNORDERED_SUB_TEST("Initializer list construct 2")
{
test::check_instances check_;
T x(list, 1000);
BOOST_TEST(x.empty());
BOOST_TEST(x.bucket_count() >= 1000);
BOOST_TEST(test::equivalent(x.hash_function(), hf));
BOOST_TEST(test::equivalent(x.key_eq(), eq));
BOOST_TEST(test::equivalent(x.get_allocator(), al));
}
UNORDERED_SUB_TEST("Initializer list construct 3")
{
test::check_instances check_;
T x(list, 10, hf1);
BOOST_TEST(x.empty());
BOOST_TEST(x.bucket_count() >= 10);
BOOST_TEST(test::equivalent(x.hash_function(), hf1));
BOOST_TEST(test::equivalent(x.key_eq(), eq));
BOOST_TEST(test::equivalent(x.get_allocator(), al));
}
UNORDERED_SUB_TEST("Initializer list construct 4")
{
test::check_instances check_;
T x(list, 10, hf1, eq1);
BOOST_TEST(x.empty());
BOOST_TEST(x.bucket_count() >= 10);
BOOST_TEST(test::equivalent(x.hash_function(), hf1));
BOOST_TEST(test::equivalent(x.key_eq(), eq1));
BOOST_TEST(test::equivalent(x.get_allocator(), al));
}
UNORDERED_SUB_TEST("Initializer list construct 5")
{
test::check_instances check_;
T x(list, 10, hf1, eq1, al1);
BOOST_TEST(x.empty());
BOOST_TEST(x.bucket_count() >= 10);
BOOST_TEST(test::equivalent(x.hash_function(), hf1));
BOOST_TEST(test::equivalent(x.key_eq(), eq1));
BOOST_TEST(test::equivalent(x.get_allocator(), al1));
}
#endif
}
template <class T>
void map_constructor_test(T*, test::random_generator const& generator)
{
typedef test::list<std::pair<BOOST_DEDUCED_TYPENAME T::key_type,
BOOST_DEDUCED_TYPENAME T::mapped_type> >
list;
test::random_values<T> v(1000, generator);
list l(v.begin(), v.end());
T x(l.begin(), l.end());
test::check_container(x, v);
test::check_equivalent_keys(x);
}
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
std::allocator<test::object> >* test_map_std_alloc;
boost::unordered_set<test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_set;
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_multiset;
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_map;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::allocator1<test::object> >* test_multimap;
using test::default_generator;
using test::generate_collisions;
using test::limited_range;
UNORDERED_TEST(constructor_tests1,
((test_map_std_alloc)(test_set)(test_multiset)(test_map)(test_multimap))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(constructor_tests2,
((test_set)(test_multiset)(test_map)(test_multimap))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(map_constructor_test,
((test_map_std_alloc)(test_map)(test_multimap))(
(default_generator)(generate_collisions)(limited_range)))
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
UNORDERED_AUTO_TEST (test_default_initializer_list) {
std::initializer_list<int> init;
boost::unordered_set<int> x1 = init;
BOOST_TEST(x1.empty());
}
#endif
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
UNORDERED_AUTO_TEST (test_initializer_list) {
boost::unordered_set<int> x1 = {2, 10, 45, -5};
BOOST_TEST(x1.find(10) != x1.end());
BOOST_TEST(x1.find(46) == x1.end());
}
#endif
}
RUN_TESTS_QUIET()

View File

@@ -0,0 +1,209 @@
// Copyright 2006-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include "../helpers/test.hpp"
#include "../objects/test.hpp"
#include "../objects/cxx11_allocator.hpp"
#include "../helpers/random_values.hpp"
#include "../helpers/tracker.hpp"
#include "../helpers/equivalent.hpp"
#include "../helpers/invariants.hpp"
test::seed_t initialize_seed(9063);
namespace copy_tests {
template <class T>
void copy_construct_tests1(T*, test::random_generator const& generator)
{
typedef BOOST_DEDUCED_TYPENAME T::allocator_type allocator_type;
BOOST_DEDUCED_TYPENAME T::hasher hf;
BOOST_DEDUCED_TYPENAME T::key_equal eq;
BOOST_DEDUCED_TYPENAME T::allocator_type al;
{
test::check_instances check_;
T x;
T y(x);
BOOST_TEST(y.empty());
BOOST_TEST(test::equivalent(y.hash_function(), hf));
BOOST_TEST(test::equivalent(y.key_eq(), eq));
BOOST_TEST(test::equivalent(y.get_allocator(), al));
BOOST_TEST(x.max_load_factor() == y.max_load_factor());
BOOST_TEST(test::selected_count(y.get_allocator()) ==
(allocator_type::is_select_on_copy));
test::check_equivalent_keys(y);
}
{
test::check_instances check_;
test::random_values<T> v(1000, generator);
T x(v.begin(), v.end());
T y(x);
test::unordered_equivalence_tester<T> equivalent(x);
BOOST_TEST(equivalent(y));
BOOST_TEST(test::selected_count(y.get_allocator()) ==
(allocator_type::is_select_on_copy));
test::check_equivalent_keys(y);
}
{
test::check_instances check_;
// In this test I drop the original containers max load factor, so it
// is much lower than the load factor. The hash table is not allowed
// to rehash, but the destination container should probably allocate
// enough buckets to decrease the load factor appropriately.
test::random_values<T> v(1000, generator);
T x(v.begin(), v.end());
x.max_load_factor(x.load_factor() / 4);
T y(x);
test::unordered_equivalence_tester<T> equivalent(x);
BOOST_TEST(equivalent(y));
// This isn't guaranteed:
BOOST_TEST(y.load_factor() < y.max_load_factor());
BOOST_TEST(test::selected_count(y.get_allocator()) ==
(allocator_type::is_select_on_copy));
test::check_equivalent_keys(y);
}
}
template <class T>
void copy_construct_tests2(T*, test::random_generator const& generator)
{
BOOST_DEDUCED_TYPENAME T::hasher hf(1);
BOOST_DEDUCED_TYPENAME T::key_equal eq(1);
BOOST_DEDUCED_TYPENAME T::allocator_type al(1);
BOOST_DEDUCED_TYPENAME T::allocator_type al2(2);
typedef BOOST_DEDUCED_TYPENAME T::allocator_type allocator_type;
{
test::check_instances check_;
T x(10000, hf, eq, al);
T y(x);
BOOST_TEST(y.empty());
BOOST_TEST(test::equivalent(y.hash_function(), hf));
BOOST_TEST(test::equivalent(y.key_eq(), eq));
BOOST_TEST(test::equivalent(y.get_allocator(), al));
BOOST_TEST(x.max_load_factor() == y.max_load_factor());
BOOST_TEST(test::selected_count(y.get_allocator()) ==
(allocator_type::is_select_on_copy));
test::check_equivalent_keys(y);
}
{
test::check_instances check_;
T x(1000, hf, eq, al);
T y(x, al2);
BOOST_TEST(y.empty());
BOOST_TEST(test::equivalent(y.hash_function(), hf));
BOOST_TEST(test::equivalent(y.key_eq(), eq));
BOOST_TEST(test::equivalent(y.get_allocator(), al2));
BOOST_TEST(x.max_load_factor() == y.max_load_factor());
BOOST_TEST(test::selected_count(y.get_allocator()) == 0);
test::check_equivalent_keys(y);
}
{
test::check_instances check_;
test::random_values<T> v(1000, generator);
T x(v.begin(), v.end(), 0, hf, eq, al);
T y(x);
test::unordered_equivalence_tester<T> equivalent(x);
BOOST_TEST(equivalent(y));
test::check_equivalent_keys(y);
BOOST_TEST(test::selected_count(y.get_allocator()) ==
(allocator_type::is_select_on_copy));
BOOST_TEST(test::equivalent(y.get_allocator(), al));
}
{
test::check_instances check_;
test::random_values<T> v(500, generator);
T x(v.begin(), v.end(), 0, hf, eq, al);
T y(x, al2);
test::unordered_equivalence_tester<T> equivalent(x);
BOOST_TEST(equivalent(y));
test::check_equivalent_keys(y);
BOOST_TEST(test::selected_count(y.get_allocator()) == 0);
BOOST_TEST(test::equivalent(y.get_allocator(), al2));
}
}
boost::unordered_set<test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_set;
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_multiset;
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_map;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::allocator2<test::object> >* test_multimap;
boost::unordered_set<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::select_copy> >*
test_set_select_copy;
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::select_copy> >*
test_multiset_select_copy;
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::select_copy> >*
test_map_select_copy;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::cxx11_allocator<test::object, test::select_copy> >*
test_multimap_select_copy;
boost::unordered_set<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_select_copy> >*
test_set_no_select_copy;
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_select_copy> >*
test_multiset_no_select_copy;
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_select_copy> >*
test_map_no_select_copy;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::cxx11_allocator<test::object, test::no_select_copy> >*
test_multimap_no_select_copy;
using test::default_generator;
using test::generate_collisions;
using test::limited_range;
UNORDERED_TEST(copy_construct_tests1,
((test_set)(test_multiset)(test_map)(test_multimap)(test_set_select_copy)(
test_multiset_select_copy)(test_map_select_copy)(
test_multimap_select_copy)(test_set_no_select_copy)(
test_multiset_no_select_copy)(test_map_no_select_copy)(
test_multimap_no_select_copy))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(copy_construct_tests2,
((test_set)(test_multiset)(test_map)(test_multimap)(test_set_select_copy)(
test_multiset_select_copy)(test_map_select_copy)(
test_multimap_select_copy)(test_set_no_select_copy)(
test_multiset_no_select_copy)(test_map_no_select_copy)(
test_multimap_no_select_copy))(
(default_generator)(generate_collisions)(limited_range)))
}
RUN_TESTS()

View File

@@ -0,0 +1,101 @@
// Copyright 2017 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_map.hpp>
#include <boost/unordered_set.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include "../helpers/test.hpp"
#include <map>
// Pretty inefficient, but the test is fast enough.
// Might be too slow if we had larger primes?
bool is_prime(std::size_t x)
{
if (x == 2) {
return true;
} else if (x == 1 || x % 2 == 0) {
return false;
} else {
// y*y <= x had rounding errors, so instead use y <= (x/y).
for (std::size_t y = 3; y <= (x / y); y += 2) {
if (x % y == 0) {
return false;
break;
}
}
return true;
}
}
void test_next_prime(std::size_t value)
{
std::size_t x = boost::unordered::detail::next_prime(value);
BOOST_TEST(is_prime(x));
BOOST_TEST(x >= value);
}
void test_prev_prime(std::size_t value)
{
std::size_t x = boost::unordered::detail::prev_prime(value);
BOOST_TEST(is_prime(x));
BOOST_TEST(x <= value);
if (x > value) {
BOOST_LIGHTWEIGHT_TEST_OSTREAM << x << "," << value << std::endl;
}
}
UNORDERED_AUTO_TEST (next_prime_test) {
BOOST_TEST(!is_prime(0));
BOOST_TEST(!is_prime(1));
BOOST_TEST(is_prime(2));
BOOST_TEST(is_prime(3));
BOOST_TEST(is_prime(13));
BOOST_TEST(!is_prime(4));
BOOST_TEST(!is_prime(100));
BOOST_TEST(boost::unordered::detail::next_prime(0) > 0);
// test_prev_prime doesn't work for values less than 17.
// Which should be okay, unless an allocator has a really tiny
// max_size?
const std::size_t min_prime = 17;
// test_next_prime doesn't work for values greater than this,
// which might be a problem if you've got terrabytes of memory?
// I seriously doubt the container would work well at such sizes
// regardless.
const std::size_t max_prime = 4294967291ul;
std::size_t i;
BOOST_TEST(is_prime(min_prime));
BOOST_TEST(is_prime(max_prime));
for (i = 0; i < 10000; ++i) {
if (i < min_prime) {
BOOST_TEST(boost::unordered::detail::prev_prime(i) == min_prime);
} else {
test_prev_prime(i);
}
test_next_prime(i);
}
std::size_t last = i - 1;
for (; i > last; last = i, i += i / 5) {
if (i > max_prime) {
BOOST_TEST(boost::unordered::detail::next_prime(i) == max_prime);
} else {
test_next_prime(i);
}
test_prev_prime(i);
}
}
RUN_TESTS()

View File

@@ -0,0 +1,514 @@
//
// Copyright 2016 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include <boost/functional/hash/hash.hpp>
#include "../helpers/test.hpp"
#include "../helpers/count.hpp"
#include <string>
// Test that various emplace methods work with different numbers of
// arguments.
namespace emplace_tests {
// Constructible with 2 to 10 arguments
struct emplace_value : private test::counted_object
{
typedef int A0;
typedef std::string A1;
typedef char A2;
typedef int A3;
typedef int A4;
typedef int A5;
typedef int A6;
typedef int A7;
typedef int A8;
typedef int A9;
int arg_count;
A0 a0;
A1 a1;
A2 a2;
A3 a3;
A4 a4;
A5 a5;
A6 a6;
A7 a7;
A8 a8;
A9 a9;
emplace_value(A0 const& b0, A1 const& b1) : arg_count(2), a0(b0), a1(b1) {}
emplace_value(A0 const& b0, A1 const& b1, A2 const& b2)
: arg_count(3), a0(b0), a1(b1), a2(b2)
{
}
emplace_value(A0 const& b0, A1 const& b1, A2 const& b2, A3 const& b3)
: arg_count(4), a0(b0), a1(b1), a2(b2), a3(b3)
{
}
emplace_value(
A0 const& b0, A1 const& b1, A2 const& b2, A3 const& b3, A4 const& b4)
: arg_count(5), a0(b0), a1(b1), a2(b2), a3(b3), a4(b4)
{
}
emplace_value(A0 const& b0, A1 const& b1, A2 const& b2, A3 const& b3,
A4 const& b4, A5 const& b5)
: arg_count(6), a0(b0), a1(b1), a2(b2), a3(b3), a4(b4), a5(b5)
{
}
emplace_value(A0 const& b0, A1 const& b1, A2 const& b2, A3 const& b3,
A4 const& b4, A5 const& b5, A6 const& b6)
: arg_count(7), a0(b0), a1(b1), a2(b2), a3(b3), a4(b4), a5(b5), a6(b6)
{
}
emplace_value(A0 const& b0, A1 const& b1, A2 const& b2, A3 const& b3,
A4 const& b4, A5 const& b5, A6 const& b6, A7 const& b7)
: arg_count(8), a0(b0), a1(b1), a2(b2), a3(b3), a4(b4), a5(b5), a6(b6),
a7(b7)
{
}
emplace_value(A0 const& b0, A1 const& b1, A2 const& b2, A3 const& b3,
A4 const& b4, A5 const& b5, A6 const& b6, A7 const& b7, A8 const& b8)
: arg_count(9), a0(b0), a1(b1), a2(b2), a3(b3), a4(b4), a5(b5), a6(b6),
a7(b7), a8(b8)
{
}
emplace_value(A0 const& b0, A1 const& b1, A2 const& b2, A3 const& b3,
A4 const& b4, A5 const& b5, A6 const& b6, A7 const& b7, A8 const& b8,
A9 const& b9)
: arg_count(10), a0(b0), a1(b1), a2(b2), a3(b3), a4(b4), a5(b5), a6(b6),
a7(b7), a8(b8), a9(b9)
{
}
friend std::size_t hash_value(emplace_value const& x)
{
std::size_t r1 = 23894278u;
if (x.arg_count >= 1)
boost::hash_combine(r1, x.a0);
if (x.arg_count >= 2)
boost::hash_combine(r1, x.a1);
if (x.arg_count >= 3)
boost::hash_combine(r1, x.a2);
if (x.arg_count >= 4)
boost::hash_combine(r1, x.a3);
if (x.arg_count >= 5)
boost::hash_combine(r1, x.a4);
if (x.arg_count >= 6)
boost::hash_combine(r1, x.a5);
if (x.arg_count >= 7)
boost::hash_combine(r1, x.a6);
if (x.arg_count >= 8)
boost::hash_combine(r1, x.a7);
if (x.arg_count >= 9)
boost::hash_combine(r1, x.a8);
if (x.arg_count >= 10)
boost::hash_combine(r1, x.a9);
return r1;
}
friend bool operator==(emplace_value const& x, emplace_value const& y)
{
if (x.arg_count != y.arg_count) {
return false;
}
if (x.arg_count >= 1 && x.a0 != y.a0) {
return false;
}
if (x.arg_count >= 2 && x.a1 != y.a1) {
return false;
}
if (x.arg_count >= 3 && x.a2 != y.a2) {
return false;
}
if (x.arg_count >= 4 && x.a3 != y.a3) {
return false;
}
if (x.arg_count >= 5 && x.a4 != y.a4) {
return false;
}
if (x.arg_count >= 6 && x.a5 != y.a5) {
return false;
}
if (x.arg_count >= 7 && x.a6 != y.a6) {
return false;
}
if (x.arg_count >= 8 && x.a7 != y.a7) {
return false;
}
if (x.arg_count >= 9 && x.a8 != y.a8) {
return false;
}
if (x.arg_count >= 10 && x.a9 != y.a9) {
return false;
}
return true;
}
private:
emplace_value();
emplace_value(emplace_value const&);
};
UNORDERED_AUTO_TEST (emplace_set) {
test::check_instances check_;
typedef boost::unordered_set<emplace_value, boost::hash<emplace_value> >
container;
typedef container::iterator iterator;
typedef std::pair<iterator, bool> return_type;
container x(10);
iterator i1;
return_type r1, r2;
// 2 args
emplace_value v1(10, "x");
r1 = x.emplace(10, std::string("x"));
BOOST_TEST_EQ(x.size(), 1u);
BOOST_TEST(r1.second);
BOOST_TEST(*r1.first == v1);
BOOST_TEST(r1.first == x.find(v1));
BOOST_TEST_EQ(check_.instances(), 2);
BOOST_TEST_EQ(check_.constructions(), 2);
// 3 args
emplace_value v2(3, "foo", 'a');
r1 = x.emplace(3, "foo", 'a');
BOOST_TEST_EQ(x.size(), 2u);
BOOST_TEST(r1.second);
BOOST_TEST(*r1.first == v2);
BOOST_TEST(r1.first == x.find(v2));
BOOST_TEST_EQ(check_.instances(), 4);
BOOST_TEST_EQ(check_.constructions(), 4);
// 7 args with hint + duplicate
emplace_value v3(25, "something", 'z', 4, 5, 6, 7);
i1 = x.emplace_hint(r1.first, 25, "something", 'z', 4, 5, 6, 7);
BOOST_TEST_EQ(x.size(), 3u);
BOOST_TEST(*i1 == v3);
BOOST_TEST(i1 == x.find(v3));
BOOST_TEST_EQ(check_.instances(), 6);
BOOST_TEST_EQ(check_.constructions(), 6);
r2 = x.emplace(25, "something", 'z', 4, 5, 6, 7);
BOOST_TEST_EQ(x.size(), 3u);
BOOST_TEST(!r2.second);
BOOST_TEST(i1 == r2.first);
// The container has to construct an object in order to check
// whether it can emplace, so there's an extra cosntruction
// here.
BOOST_TEST_EQ(check_.instances(), 6);
BOOST_TEST_EQ(check_.constructions(), 7);
// 10 args + hint duplicate
std::string s1;
emplace_value v4(10, s1, 'a', 4, 5, 6, 7, 8, 9, 10);
r1 = x.emplace(10, s1, 'a', 4, 5, 6, 7, 8, 9, 10);
BOOST_TEST_EQ(x.size(), 4u);
BOOST_TEST(r1.second);
BOOST_TEST(*r1.first == v4);
BOOST_TEST(r1.first == x.find(v4));
BOOST_TEST_EQ(check_.instances(), 8);
BOOST_TEST_EQ(check_.constructions(), 9);
BOOST_TEST(
r1.first == x.emplace_hint(r1.first, 10, "", 'a', 4, 5, 6, 7, 8, 9, 10));
BOOST_TEST(
r1.first == x.emplace_hint(r2.first, 10, "", 'a', 4, 5, 6, 7, 8, 9, 10));
BOOST_TEST(
r1.first == x.emplace_hint(x.end(), 10, "", 'a', 4, 5, 6, 7, 8, 9, 10));
BOOST_TEST_EQ(check_.instances(), 8);
BOOST_TEST_EQ(check_.constructions(), 12);
BOOST_TEST_EQ(x.size(), 4u);
BOOST_TEST(x.count(v1) == 1);
BOOST_TEST(x.count(v2) == 1);
BOOST_TEST(x.count(v3) == 1);
BOOST_TEST(x.count(v4) == 1);
}
UNORDERED_AUTO_TEST (emplace_multiset) {
test::check_instances check_;
typedef boost::unordered_multiset<emplace_value,
boost::hash<emplace_value> >
container;
typedef container::iterator iterator;
container x(10);
iterator i1, i2;
// 2 args.
emplace_value v1(10, "x");
i1 = x.emplace(10, std::string("x"));
BOOST_TEST_EQ(x.size(), 1u);
BOOST_TEST(i1 == x.find(v1));
BOOST_TEST_EQ(check_.instances(), 2);
BOOST_TEST_EQ(check_.constructions(), 2);
// 4 args + duplicate
emplace_value v2(4, "foo", 'a', 15);
i1 = x.emplace(4, "foo", 'a', 15);
BOOST_TEST_EQ(x.size(), 2u);
BOOST_TEST(i1 == x.find(v2));
BOOST_TEST_EQ(check_.instances(), 4);
BOOST_TEST_EQ(check_.constructions(), 4);
i2 = x.emplace(4, "foo", 'a', 15);
BOOST_TEST_EQ(x.size(), 3u);
BOOST_TEST(i1 != i2);
BOOST_TEST(*i1 == *i2);
BOOST_TEST(x.count(*i1) == 2);
BOOST_TEST_EQ(check_.instances(), 5);
BOOST_TEST_EQ(check_.constructions(), 5);
// 7 args + duplicate using hint.
emplace_value v3(7, "", 'z', 4, 5, 6, 7);
i1 = x.emplace(7, "", 'z', 4, 5, 6, 7);
BOOST_TEST_EQ(x.size(), 4u);
BOOST_TEST_EQ(i1->a2, 'z');
BOOST_TEST(x.count(*i1) == 1);
BOOST_TEST(i1 == x.find(v3));
BOOST_TEST_EQ(check_.instances(), 7);
BOOST_TEST_EQ(check_.constructions(), 7);
i2 = x.emplace_hint(i1, 7, "", 'z', 4, 5, 6, 7);
BOOST_TEST_EQ(x.size(), 5u);
BOOST_TEST(*i1 == *i2);
BOOST_TEST(i1 != i2);
BOOST_TEST(x.count(*i1) == 2);
BOOST_TEST_EQ(check_.instances(), 8);
BOOST_TEST_EQ(check_.constructions(), 8);
// 10 args with bad hint + duplicate
emplace_value v4(10, "", 'a', 4, 5, 6, 7, 8, 9, 10);
i1 = x.emplace_hint(i2, 10, "", 'a', 4, 5, 6, 7, 8, 9, 10);
BOOST_TEST_EQ(x.size(), 6u);
BOOST_TEST_EQ(i1->arg_count, 10);
BOOST_TEST(i1 == x.find(v4));
BOOST_TEST_EQ(check_.instances(), 10);
BOOST_TEST_EQ(check_.constructions(), 10);
i2 = x.emplace_hint(x.end(), 10, "", 'a', 4, 5, 6, 7, 8, 9, 10);
BOOST_TEST_EQ(x.size(), 7u);
BOOST_TEST(*i1 == *i2);
BOOST_TEST(i1 != i2);
BOOST_TEST(x.count(*i1) == 2);
BOOST_TEST_EQ(check_.instances(), 11);
BOOST_TEST_EQ(check_.constructions(), 11);
BOOST_TEST_EQ(x.count(v1), 1u);
BOOST_TEST_EQ(x.count(v2), 2u);
BOOST_TEST_EQ(x.count(v3), 2u);
}
UNORDERED_AUTO_TEST (emplace_map) {
test::check_instances check_;
typedef boost::unordered_map<emplace_value, emplace_value,
boost::hash<emplace_value> >
container;
typedef container::iterator iterator;
typedef std::pair<iterator, bool> return_type;
container x(10);
return_type r1, r2;
// 5/8 args + duplicate
emplace_value k1(5, "", 'b', 4, 5);
emplace_value m1(8, "xxx", 'z', 4, 5, 6, 7, 8);
r1 = x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(5, "", 'b', 4, 5),
boost::make_tuple(8, "xxx", 'z', 4, 5, 6, 7, 8));
BOOST_TEST_EQ(x.size(), 1u);
BOOST_TEST(r1.second);
BOOST_TEST(x.find(k1) == r1.first);
BOOST_TEST(x.find(k1)->second == m1);
BOOST_TEST_EQ(check_.instances(), 4);
BOOST_TEST_EQ(check_.constructions(), 4);
r2 = x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(5, "", 'b', 4, 5),
boost::make_tuple(8, "xxx", 'z', 4, 5, 6, 7, 8));
BOOST_TEST_EQ(x.size(), 1u);
BOOST_TEST(!r2.second);
BOOST_TEST(r1.first == r2.first);
BOOST_TEST(x.find(k1)->second == m1);
BOOST_TEST_EQ(check_.instances(), 4);
// constructions could possibly be 5 if the implementation only
// constructed the key.
BOOST_TEST_EQ(check_.constructions(), 6);
// 9/3 args + duplicates with hints, different mapped value.
emplace_value k2(9, "", 'b', 4, 5, 6, 7, 8, 9);
emplace_value m2(3, "aaa", 'm');
r1 = x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(3, "aaa", 'm'));
BOOST_TEST_EQ(x.size(), 2u);
BOOST_TEST(r1.second);
BOOST_TEST(r1.first->first.arg_count == 9);
BOOST_TEST(r1.first->second.arg_count == 3);
BOOST_TEST(x.find(k2) == r1.first);
BOOST_TEST(x.find(k2)->second == m2);
BOOST_TEST_EQ(check_.instances(), 8);
BOOST_TEST_EQ(check_.constructions(), 10);
BOOST_TEST(r1.first ==
x.emplace_hint(r1.first, boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(15, "jkjk")));
BOOST_TEST(r1.first ==
x.emplace_hint(r2.first, boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(275, "xxx", 'm', 6)));
BOOST_TEST(r1.first ==
x.emplace_hint(x.end(), boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(-10, "blah blah", '\0')));
BOOST_TEST_EQ(x.size(), 2u);
BOOST_TEST(x.find(k2)->second == m2);
BOOST_TEST_EQ(check_.instances(), 8);
BOOST_TEST_EQ(check_.constructions(), 16);
}
UNORDERED_AUTO_TEST (emplace_multimap) {
test::check_instances check_;
typedef boost::unordered_multimap<emplace_value, emplace_value,
boost::hash<emplace_value> >
container;
typedef container::iterator iterator;
container x(10);
iterator i1, i2, i3, i4;
// 5/8 args + duplicate
emplace_value k1(5, "", 'b', 4, 5);
emplace_value m1(8, "xxx", 'z', 4, 5, 6, 7, 8);
i1 = x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(5, "", 'b', 4, 5),
boost::make_tuple(8, "xxx", 'z', 4, 5, 6, 7, 8));
BOOST_TEST_EQ(x.size(), 1u);
BOOST_TEST(x.find(k1) == i1);
BOOST_TEST(x.find(k1)->second == m1);
BOOST_TEST_EQ(check_.instances(), 4);
BOOST_TEST_EQ(check_.constructions(), 4);
emplace_value m1a(8, "xxx", 'z', 4, 5, 6, 7, 8);
i2 = x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(5, "", 'b', 4, 5),
boost::make_tuple(8, "xxx", 'z', 4, 5, 6, 7, 8));
BOOST_TEST_EQ(x.size(), 2u);
BOOST_TEST(i1 != i2);
BOOST_TEST(i1->second == m1);
BOOST_TEST(i2->second == m1a);
BOOST_TEST_EQ(check_.instances(), 7);
BOOST_TEST_EQ(check_.constructions(), 7);
// 9/3 args + duplicates with hints, different mapped value.
emplace_value k2(9, "", 'b', 4, 5, 6, 7, 8, 9);
emplace_value m2(3, "aaa", 'm');
i1 = x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(3, "aaa", 'm'));
BOOST_TEST_EQ(x.size(), 3u);
BOOST_TEST(i1->first.arg_count == 9);
BOOST_TEST(i1->second.arg_count == 3);
BOOST_TEST_EQ(check_.instances(), 11);
BOOST_TEST_EQ(check_.constructions(), 11);
emplace_value m2a(15, "jkjk");
i2 = x.emplace_hint(i2, boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(15, "jkjk"));
emplace_value m2b(275, "xxx", 'm', 6);
i3 = x.emplace_hint(i1, boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(275, "xxx", 'm', 6));
emplace_value m2c(-10, "blah blah", '\0');
i4 = x.emplace_hint(x.end(), boost::unordered::piecewise_construct,
boost::make_tuple(9, "", 'b', 4, 5, 6, 7, 8, 9),
boost::make_tuple(-10, "blah blah", '\0'));
BOOST_TEST_EQ(x.size(), 6u);
BOOST_TEST(x.find(k2)->second == m2);
BOOST_TEST_EQ(check_.instances(), 20);
BOOST_TEST_EQ(check_.constructions(), 20);
}
UNORDERED_AUTO_TEST (try_emplace) {
test::check_instances check_;
typedef boost::unordered_map<int, emplace_value> container;
typedef container::iterator iterator;
typedef std::pair<iterator, bool> return_type;
container x(10);
return_type r1, r2, r3;
int k1 = 3;
emplace_value m1(414, "grr");
r1 = x.try_emplace(3, 414, "grr");
BOOST_TEST(r1.second);
BOOST_TEST(r1.first->first == k1);
BOOST_TEST(r1.first->second == m1);
BOOST_TEST_EQ(x.size(), 1u);
BOOST_TEST_EQ(check_.instances(), 2);
BOOST_TEST_EQ(check_.constructions(), 2);
int k2 = 10;
emplace_value m2(25, "", 'z');
r2 = x.try_emplace(10, 25, std::string(""), 'z');
BOOST_TEST(r2.second);
BOOST_TEST(r2.first->first == k2);
BOOST_TEST(r2.first->second == m2);
BOOST_TEST_EQ(x.size(), 2u);
BOOST_TEST_EQ(check_.instances(), 4);
BOOST_TEST_EQ(check_.constructions(), 4);
BOOST_TEST(x.find(k1)->second == m1);
BOOST_TEST(x.find(k2)->second == m2);
r3 = x.try_emplace(k2, 68, "jfeoj", 'p', 49309, 2323);
BOOST_TEST(!r3.second);
BOOST_TEST(r3.first == r2.first);
BOOST_TEST(r3.first->second == m2);
BOOST_TEST_EQ(x.size(), 2u);
BOOST_TEST_EQ(check_.instances(), 4);
BOOST_TEST_EQ(check_.constructions(), 4);
BOOST_TEST(r2.first == x.try_emplace(r2.first, k2, 808709, "what"));
BOOST_TEST(
r2.first ==
x.try_emplace(r2.first, k2, 10, "xxx", 'a', 4, 5, 6, 7, 8, 9, 10));
BOOST_TEST(r2.first->second == m2);
BOOST_TEST_EQ(x.size(), 2u);
}
}
RUN_TESTS()

View File

@@ -0,0 +1,157 @@
// Copyright 2008-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include <boost/preprocessor/seq.hpp>
#include <list>
#include "../helpers/test.hpp"
namespace equality_tests {
struct mod_compare
{
bool alt_hash_;
explicit mod_compare(bool alt_hash = false) : alt_hash_(alt_hash) {}
bool operator()(int x, int y) const { return x % 1000 == y % 1000; }
std::size_t operator()(int x) const
{
return alt_hash_ ? static_cast<std::size_t>(x % 250)
: static_cast<std::size_t>((x + 5) % 250);
}
};
#define UNORDERED_EQUALITY_SET_TEST(seq1, op, seq2) \
do { \
boost::unordered_set<int, mod_compare, mod_compare> set1, set2; \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_SET_INSERT, set1, seq1) \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_SET_INSERT, set2, seq2) \
BOOST_TEST(set1 op set2); \
} while (0)
#define UNORDERED_EQUALITY_MULTISET_TEST(seq1, op, seq2) \
do { \
boost::unordered_multiset<int, mod_compare, mod_compare> set1, set2; \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_SET_INSERT, set1, seq1) \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_SET_INSERT, set2, seq2) \
BOOST_TEST(set1 op set2); \
} while (0)
#define UNORDERED_EQUALITY_MAP_TEST(seq1, op, seq2) \
do { \
boost::unordered_map<int, int, mod_compare, mod_compare> map1, map2; \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_MAP_INSERT, map1, seq1) \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_MAP_INSERT, map2, seq2) \
BOOST_TEST(map1 op map2); \
} while (0)
#define UNORDERED_EQUALITY_MULTIMAP_TEST(seq1, op, seq2) \
do { \
boost::unordered_multimap<int, int, mod_compare, mod_compare> map1, map2; \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_MAP_INSERT, map1, seq1) \
BOOST_PP_SEQ_FOR_EACH(UNORDERED_MAP_INSERT, map2, seq2) \
BOOST_TEST(map1 op map2); \
} while (0)
#define UNORDERED_SET_INSERT(r, set, item) set.insert(item);
#define UNORDERED_MAP_INSERT(r, map, item) \
map.insert(std::pair<int const, int> BOOST_PP_SEQ_TO_TUPLE(item));
UNORDERED_AUTO_TEST (equality_size_tests) {
boost::unordered_set<int> x1, x2;
BOOST_TEST(x1 == x2);
BOOST_TEST(!(x1 != x2));
x1.insert(1);
BOOST_TEST(x1 != x2);
BOOST_TEST(!(x1 == x2));
BOOST_TEST(x2 != x1);
BOOST_TEST(!(x2 == x1));
x2.insert(1);
BOOST_TEST(x1 == x2);
BOOST_TEST(!(x1 != x2));
x2.insert(2);
BOOST_TEST(x1 != x2);
BOOST_TEST(!(x1 == x2));
BOOST_TEST(x2 != x1);
BOOST_TEST(!(x2 == x1));
}
UNORDERED_AUTO_TEST (equality_key_value_tests) {
UNORDERED_EQUALITY_MULTISET_TEST((1), !=, (2));
UNORDERED_EQUALITY_SET_TEST((2), ==, (2));
UNORDERED_EQUALITY_MAP_TEST(((1)(1))((2)(1)), !=, ((1)(1))((3)(1)));
}
UNORDERED_AUTO_TEST (equality_collision_test) {
UNORDERED_EQUALITY_MULTISET_TEST((1), !=, (501));
UNORDERED_EQUALITY_MULTISET_TEST((1)(251), !=, (1)(501));
UNORDERED_EQUALITY_MULTIMAP_TEST(
((251)(1))((1)(1)), !=, ((501)(1))((1)(1)));
UNORDERED_EQUALITY_MULTISET_TEST((1)(501), ==, (1)(501));
UNORDERED_EQUALITY_SET_TEST((1)(501), ==, (501)(1));
}
UNORDERED_AUTO_TEST (equality_group_size_test) {
UNORDERED_EQUALITY_MULTISET_TEST((10)(20)(20), !=, (10)(10)(20));
UNORDERED_EQUALITY_MULTIMAP_TEST(
((10)(1))((20)(1))((20)(1)), !=, ((10)(1))((20)(1))((10)(1)));
UNORDERED_EQUALITY_MULTIMAP_TEST(
((20)(1))((10)(1))((10)(1)), ==, ((10)(1))((20)(1))((10)(1)));
}
UNORDERED_AUTO_TEST (equality_map_value_test) {
UNORDERED_EQUALITY_MAP_TEST(((1)(1)), !=, ((1)(2)));
UNORDERED_EQUALITY_MAP_TEST(((1)(1)), ==, ((1)(1)));
UNORDERED_EQUALITY_MULTIMAP_TEST(((1)(1)), !=, ((1)(2)));
UNORDERED_EQUALITY_MULTIMAP_TEST(((1)(1))((1)(1)), !=, ((1)(1))((1)(2)));
UNORDERED_EQUALITY_MULTIMAP_TEST(((1)(2))((1)(1)), ==, ((1)(1))((1)(2)));
UNORDERED_EQUALITY_MULTIMAP_TEST(((1)(2))((1)(1)), !=, ((1)(1))((1)(3)));
}
UNORDERED_AUTO_TEST (equality_predicate_test) {
UNORDERED_EQUALITY_SET_TEST((1), !=, (1001));
UNORDERED_EQUALITY_MAP_TEST(((1)(2))((1001)(1)), !=, ((1001)(2))((1)(1)));
}
UNORDERED_AUTO_TEST (equality_multiple_group_test) {
UNORDERED_EQUALITY_MULTISET_TEST(
(1)(1)(1)(1001)(2001)(2001)(2)(1002)(3)(1003)(2003), ==,
(3)(1003)(2003)(1002)(2)(2001)(2001)(1)(1001)(1)(1));
}
// Test that equality still works when the two containers have
// different hash functions but the same equality predicate.
UNORDERED_AUTO_TEST (equality_different_hash_test) {
typedef boost::unordered_set<int, mod_compare, mod_compare> set;
set set1(0, mod_compare(false), mod_compare(false));
set set2(0, mod_compare(true), mod_compare(true));
BOOST_TEST(set1 == set2);
set1.insert(1);
set2.insert(2);
BOOST_TEST(set1 != set2);
set1.insert(2);
set2.insert(1);
BOOST_TEST(set1 == set2);
set1.insert(10);
set2.insert(20);
BOOST_TEST(set1 != set2);
set1.insert(20);
set2.insert(10);
BOOST_TEST(set1 == set2);
}
}
RUN_TESTS()

View File

@@ -0,0 +1,77 @@
// Copyright 2006-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include "../helpers/test.hpp"
#include <algorithm>
#include <map>
#include "../helpers/list.hpp"
#include "../helpers/tracker.hpp"
#include "../helpers/invariants.hpp"
template <class Container, class Iterator>
void test_equal_insertion(Iterator begin, Iterator end)
{
typedef test::ordered<Container> tracker;
Container x1;
tracker x2 = test::create_ordered(x1);
for (Iterator it = begin; it != end; ++it) {
x1.insert(*it);
x2.insert(*it);
x2.compare_key(x1, *it);
}
x2.compare(x1);
test::check_equivalent_keys(x1);
}
UNORDERED_AUTO_TEST (set_tests) {
int values[][5] = {{1}, {54, 23}, {-13, 65}, {77, 77}, {986, 25, 986}};
typedef boost::unordered_set<int> set;
typedef boost::unordered_multiset<int> multiset;
test_equal_insertion<set>(values[0], values[0] + 1);
test_equal_insertion<set>(values[1], values[1] + 2);
test_equal_insertion<set>(values[2], values[2] + 2);
test_equal_insertion<set>(values[3], values[3] + 2);
test_equal_insertion<set>(values[4], values[4] + 3);
test_equal_insertion<multiset>(values[0], values[0] + 1);
test_equal_insertion<multiset>(values[1], values[1] + 2);
test_equal_insertion<multiset>(values[2], values[2] + 2);
test_equal_insertion<multiset>(values[3], values[3] + 2);
test_equal_insertion<multiset>(values[4], values[4] + 3);
}
UNORDERED_AUTO_TEST (map_tests) {
typedef test::list<std::pair<int const, int> > values_type;
values_type v[5];
v[0].push_back(std::pair<int const, int>(1, 1));
v[1].push_back(std::pair<int const, int>(28, 34));
v[1].push_back(std::pair<int const, int>(16, 58));
v[1].push_back(std::pair<int const, int>(-124, 62));
v[2].push_back(std::pair<int const, int>(432, 12));
v[2].push_back(std::pair<int const, int>(9, 13));
v[2].push_back(std::pair<int const, int>(432, 24));
for (int i = 0; i < 5; ++i)
test_equal_insertion<boost::unordered_map<int, int> >(
v[i].begin(), v[i].end());
for (int i2 = 0; i2 < 5; ++i2)
test_equal_insertion<boost::unordered_multimap<int, int> >(
v[i2].begin(), v[i2].end());
}
RUN_TESTS()

View File

@@ -0,0 +1,217 @@
// Copyright 2006-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// The code for erasing elements from containers with equivalent keys is very
// hairy with several tricky edge cases - so explicitly test each one.
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include "../helpers/test.hpp"
#include "../helpers/list.hpp"
#include "../helpers/invariants.hpp"
#include "../helpers/helpers.hpp"
#include <set>
#include <iterator>
#include "../objects/test.hpp"
#if BOOST_WORKAROUND(BOOST_MSVC, < 1400)
#pragma warning(disable : 4267) // conversion from 'size_t' to 'unsigned int',
// possible loss of data.
#endif
struct write_pair_type
{
template <class X1, class X2>
void operator()(std::pair<X1, X2> const& x) const
{
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "(" << x.first << "," << x.second << ")";
}
} write_pair;
template <class Container> void write_container(Container const& x)
{
std::for_each(x.begin(), x.end(), write_pair);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "\n";
}
// Make everything collide - for testing erase in a single bucket.
struct collision_hash
{
std::size_t operator()(int) const { return 0; }
};
// For testing erase in 2 buckets.
struct collision2_hash
{
std::size_t operator()(int x) const
{
return static_cast<std::size_t>(x & 1);
}
};
// For testing erase in lots of buckets.
struct collision3_hash
{
std::size_t operator()(int x) const { return static_cast<std::size_t>(x); }
};
typedef boost::unordered_multimap<int, int, collision_hash, std::equal_to<int>,
test::allocator1<std::pair<int const, int> > >
collide_map;
typedef boost::unordered_multimap<int, int, collision2_hash, std::equal_to<int>,
test::allocator2<std::pair<int const, int> > >
collide_map2;
typedef boost::unordered_multimap<int, int, collision3_hash, std::equal_to<int>,
test::allocator2<std::pair<int const, int> > >
collide_map3;
typedef collide_map::value_type collide_value;
typedef test::list<collide_value> collide_list;
UNORDERED_AUTO_TEST (empty_range_tests) {
collide_map x;
x.erase(x.begin(), x.end());
x.erase(x.begin(), x.begin());
x.erase(x.end(), x.end());
test::check_equivalent_keys(x);
}
UNORDERED_AUTO_TEST (single_item_tests) {
collide_list init;
init.push_back(collide_value(1, 1));
collide_map x(init.begin(), init.end());
x.erase(x.begin(), x.begin());
BOOST_TEST(x.count(1) == 1 && x.size() == 1);
test::check_equivalent_keys(x);
x.erase(x.end(), x.end());
BOOST_TEST(x.count(1) == 1 && x.size() == 1);
test::check_equivalent_keys(x);
x.erase(x.begin(), x.end());
BOOST_TEST(x.count(1) == 0 && x.size() == 0);
test::check_equivalent_keys(x);
}
UNORDERED_AUTO_TEST (two_equivalent_item_tests) {
collide_list init;
init.push_back(collide_value(1, 1));
init.push_back(collide_value(1, 2));
{
collide_map x(init.begin(), init.end());
x.erase(x.begin(), x.end());
BOOST_TEST(x.count(1) == 0 && x.size() == 0);
test::check_equivalent_keys(x);
}
{
collide_map x(init.begin(), init.end());
int value = test::next(x.begin())->second;
x.erase(x.begin(), test::next(x.begin()));
BOOST_TEST(x.count(1) == 1 && x.size() == 1 && x.begin()->first == 1 &&
x.begin()->second == value);
test::check_equivalent_keys(x);
}
{
collide_map x(init.begin(), init.end());
int value = x.begin()->second;
x.erase(test::next(x.begin()), x.end());
BOOST_TEST(x.count(1) == 1 && x.size() == 1 && x.begin()->first == 1 &&
x.begin()->second == value);
test::check_equivalent_keys(x);
}
}
// More automated tests...
template <class Range1, class Range2>
bool compare(Range1 const& x, Range2 const& y)
{
collide_list a(x.begin(), x.end());
collide_list b(y.begin(), y.end());
a.sort();
b.sort();
return a == b;
}
template <class Container>
bool general_erase_range_test(Container& x, std::size_t start, std::size_t end)
{
collide_list l(x.begin(), x.end());
l.erase(test::next(l.begin(), start), test::next(l.begin(), end));
x.erase(test::next(x.begin(), start), test::next(x.begin(), end));
test::check_equivalent_keys(x);
return compare(l, x);
}
template <class Container> void erase_subrange_tests(Container const& x)
{
for (std::size_t length = 0; length < x.size(); ++length) {
for (std::size_t position = 0; position < x.size() - length; ++position) {
Container y(x);
collide_list init(y.begin(), y.end());
if (!general_erase_range_test(y, position, position + length)) {
BOOST_ERROR("general_erase_range_test failed.");
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Erase: [" << position << ","
<< position + length << ")\n";
write_container(init);
write_container(y);
}
}
}
}
template <class Container>
void x_by_y_erase_range_tests(Container*, int values, int duplicates)
{
Container y;
for (int i = 0; i < values; ++i) {
for (int j = 0; j < duplicates; ++j) {
y.insert(collide_value(i, j));
}
}
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Values: " << values
<< ", Duplicates: " << duplicates << "\n";
erase_subrange_tests(y);
}
template <class Container>
void exhaustive_erase_tests(Container* x, int num_values, int num_duplicated)
{
for (int i = 0; i < num_values; ++i) {
for (int j = 0; j < num_duplicated; ++j) {
x_by_y_erase_range_tests(x, i, j);
}
}
}
UNORDERED_AUTO_TEST (exhaustive_collide_tests) {
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "exhaustive_collide_tests:\n";
collide_map m;
exhaustive_erase_tests((collide_map*)0, 4, 4);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "\n";
}
UNORDERED_AUTO_TEST (exhaustive_collide2_tests) {
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "exhaustive_collide2_tests:\n";
exhaustive_erase_tests((collide_map2*)0, 8, 4);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "\n";
}
UNORDERED_AUTO_TEST (exhaustive_collide3_tests) {
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "exhaustive_collide3_tests:\n";
exhaustive_erase_tests((collide_map3*)0, 8, 4);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "\n";
}
RUN_TESTS()

View File

@@ -0,0 +1,272 @@
// Copyright 2006-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include "../helpers/test.hpp"
#include "../objects/test.hpp"
#include "../helpers/random_values.hpp"
#include "../helpers/tracker.hpp"
#include "../helpers/equivalent.hpp"
#include "../helpers/helpers.hpp"
#include "../helpers/invariants.hpp"
#include <vector>
#include <cstdlib>
namespace erase_tests {
test::seed_t initialize_seed(85638);
template <class Container>
void erase_tests1(Container*, test::random_generator generator)
{
typedef BOOST_DEDUCED_TYPENAME Container::iterator iterator;
typedef BOOST_DEDUCED_TYPENAME Container::const_iterator c_iterator;
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Erase by key.\n";
{
test::check_instances check_;
test::random_values<Container> v(1000, generator);
Container x(v.begin(), v.end());
int iterations = 0;
for (BOOST_DEDUCED_TYPENAME test::random_values<Container>::iterator it =
v.begin();
it != v.end(); ++it) {
std::size_t count = x.count(test::get_key<Container>(*it));
std::size_t old_size = x.size();
BOOST_TEST(count == x.erase(test::get_key<Container>(*it)));
BOOST_TEST(x.size() == old_size - count);
BOOST_TEST(x.count(test::get_key<Container>(*it)) == 0);
BOOST_TEST(x.find(test::get_key<Container>(*it)) == x.end());
if (++iterations % 20 == 0)
test::check_equivalent_keys(x);
}
}
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "erase(begin()).\n";
{
test::check_instances check_;
test::random_values<Container> v(1000, generator);
Container x(v.begin(), v.end());
std::size_t size = x.size();
int iterations = 0;
while (size > 0 && !x.empty()) {
BOOST_DEDUCED_TYPENAME Container::key_type key =
test::get_key<Container>(*x.begin());
std::size_t count = x.count(key);
iterator pos = x.erase(x.begin());
--size;
BOOST_TEST(pos == x.begin());
BOOST_TEST(x.count(key) == count - 1);
BOOST_TEST(x.size() == size);
if (++iterations % 20 == 0)
test::check_equivalent_keys(x);
}
BOOST_TEST(x.empty());
}
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "erase(random position).\n";
{
test::check_instances check_;
test::random_values<Container> v(1000, generator);
Container x(v.begin(), v.end());
std::size_t size = x.size();
int iterations = 0;
while (size > 0 && !x.empty()) {
std::size_t index = test::random_value(x.size());
c_iterator prev, pos, next;
if (index == 0) {
prev = pos = x.begin();
} else {
prev = test::next(x.begin(), index - 1);
pos = test::next(prev);
}
next = test::next(pos);
BOOST_DEDUCED_TYPENAME Container::key_type key =
test::get_key<Container>(*pos);
std::size_t count = x.count(key);
BOOST_TEST(count > 0);
BOOST_TEST(next == x.erase(pos));
--size;
if (size > 0)
BOOST_TEST(index == 0 ? next == x.begin() : next == test::next(prev));
BOOST_TEST(x.count(key) == count - 1);
if (x.count(key) != count - 1) {
BOOST_LIGHTWEIGHT_TEST_OSTREAM << count << " => " << x.count(key)
<< std::endl;
}
BOOST_TEST(x.size() == size);
if (++iterations % 20 == 0)
test::check_equivalent_keys(x);
}
BOOST_TEST(x.empty());
}
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "erase(ranges).\n";
{
test::check_instances check_;
test::random_values<Container> v(500, generator);
Container x(v.begin(), v.end());
std::size_t size = x.size();
// I'm actually stretching it a little here, as the standard says it
// returns 'the iterator immediately following the erase elements'
// and if nothing is erased, then there's nothing to follow. But I
// think this is the only sensible option...
BOOST_TEST(x.erase(x.end(), x.end()) == x.end());
BOOST_TEST(x.erase(x.begin(), x.begin()) == x.begin());
BOOST_TEST(x.size() == size);
test::check_equivalent_keys(x);
BOOST_TEST(x.erase(x.begin(), x.end()) == x.end());
BOOST_TEST(x.empty());
BOOST_TEST(x.begin() == x.end());
test::check_equivalent_keys(x);
BOOST_TEST(x.erase(x.begin(), x.end()) == x.begin());
test::check_equivalent_keys(x);
}
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "erase(random ranges).\n";
{
test::check_instances check_;
Container x;
for (int i = 0; i < 100; ++i) {
test::random_values<Container> v(1000, generator);
x.insert(v.begin(), v.end());
// Note that erase only invalidates the erased iterators.
std::vector<c_iterator> iterators;
for (c_iterator it = x.cbegin(); it != x.cend(); ++it) {
iterators.push_back(it);
}
iterators.push_back(x.cend());
while (iterators.size() > 1) {
std::size_t start = test::random_value(iterators.size());
std::size_t length = test::random_value(iterators.size() - start);
x.erase(iterators[start], iterators[start + length]);
iterators.erase(test::next(iterators.begin(), start),
test::next(iterators.begin(), start + length));
BOOST_TEST(x.size() == iterators.size() - 1);
BOOST_DEDUCED_TYPENAME std::vector<c_iterator>::const_iterator i2 =
iterators.begin();
for (c_iterator i1 = x.cbegin(); i1 != x.cend(); ++i1) {
BOOST_TEST(i1 == *i2);
++i2;
}
BOOST_TEST(x.cend() == *i2);
test::check_equivalent_keys(x);
}
BOOST_TEST(x.empty());
}
}
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "quick_erase(begin()).\n";
{
test::check_instances check_;
test::random_values<Container> v(1000, generator);
Container x(v.begin(), v.end());
std::size_t size = x.size();
int iterations = 0;
while (size > 0 && !x.empty()) {
BOOST_DEDUCED_TYPENAME Container::key_type key =
test::get_key<Container>(*x.begin());
std::size_t count = x.count(key);
x.quick_erase(x.begin());
--size;
BOOST_TEST(x.count(key) == count - 1);
BOOST_TEST(x.size() == size);
if (++iterations % 20 == 0)
test::check_equivalent_keys(x);
}
BOOST_TEST(x.empty());
}
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "quick_erase(random position).\n";
{
test::check_instances check_;
test::random_values<Container> v(1000, generator);
Container x(v.begin(), v.end());
std::size_t size = x.size();
int iterations = 0;
while (size > 0 && !x.empty()) {
std::size_t index = test::random_value(x.size());
BOOST_DEDUCED_TYPENAME Container::const_iterator prev, pos, next;
if (index == 0) {
prev = pos = x.begin();
} else {
prev = test::next(x.begin(), index - 1);
pos = test::next(prev);
}
next = test::next(pos);
BOOST_DEDUCED_TYPENAME Container::key_type key =
test::get_key<Container>(*pos);
std::size_t count = x.count(key);
BOOST_TEST(count > 0);
x.quick_erase(pos);
--size;
if (size > 0)
BOOST_TEST(index == 0 ? next == x.begin() : next == test::next(prev));
BOOST_TEST(x.count(key) == count - 1);
if (x.count(key) != count - 1) {
BOOST_LIGHTWEIGHT_TEST_OSTREAM << count << " => " << x.count(key)
<< std::endl;
}
BOOST_TEST(x.size() == size);
if (++iterations % 20 == 0)
test::check_equivalent_keys(x);
}
BOOST_TEST(x.empty());
}
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "clear().\n";
{
test::check_instances check_;
test::random_values<Container> v(500, generator);
Container x(v.begin(), v.end());
x.clear();
BOOST_TEST(x.empty());
BOOST_TEST(x.begin() == x.end());
}
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "\n";
}
boost::unordered_set<test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_set;
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_multiset;
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_map;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::allocator2<test::object> >* test_multimap;
using test::default_generator;
using test::generate_collisions;
using test::limited_range;
UNORDERED_TEST(
erase_tests1, ((test_set)(test_multiset)(test_map)(test_multimap))(
(default_generator)(generate_collisions)(limited_range)))
}
RUN_TESTS()

View File

@@ -0,0 +1,138 @@
// Copyright 2016 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_map.hpp>
#include <boost/unordered_set.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include "../helpers/equivalent.hpp"
#include "../helpers/helpers.hpp"
#include "../helpers/invariants.hpp"
#include "../helpers/random_values.hpp"
#include "../helpers/test.hpp"
#include "../helpers/tracker.hpp"
#include "../objects/test.hpp"
#include <boost/next_prior.hpp>
namespace extract_tests {
test::seed_t initialize_seed(85638);
template <class Container>
void extract_tests1(Container*, test::random_generator generator)
{
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Extract by key.\n";
{
test::check_instances check_;
test::random_values<Container> v(1000, generator);
Container x(v.begin(), v.end());
int iterations = 0;
for (BOOST_DEDUCED_TYPENAME test::random_values<Container>::iterator it =
v.begin();
it != v.end(); ++it) {
std::size_t count = x.count(test::get_key<Container>(*it));
std::size_t old_size = x.size();
std::size_t new_count = count ? count - 1 : count;
std::size_t new_size = count ? old_size - 1 : old_size;
typename Container::node_type n =
x.extract(test::get_key<Container>(*it));
BOOST_TEST((n ? true : false) == (count ? true : false));
BOOST_TEST(x.size() == new_size);
BOOST_TEST(x.count(test::get_key<Container>(*it)) == new_count);
if (!new_count) {
BOOST_TEST(x.find(test::get_key<Container>(*it)) == x.end());
} else {
BOOST_TEST(x.find(test::get_key<Container>(*it)) != x.end());
}
if (++iterations % 20 == 0)
test::check_equivalent_keys(x);
}
BOOST_TEST(x.empty());
}
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "extract(begin()).\n";
{
test::check_instances check_;
test::random_values<Container> v(1000, generator);
Container x(v.begin(), v.end());
std::size_t size = x.size();
int iterations = 0;
while (size > 0 && !x.empty()) {
BOOST_DEDUCED_TYPENAME Container::key_type key =
test::get_key<Container>(*x.begin());
std::size_t count = x.count(key);
typename Container::node_type n = x.extract(x.begin());
BOOST_TEST(n);
--size;
BOOST_TEST(x.count(key) == count - 1);
BOOST_TEST(x.size() == size);
if (++iterations % 20 == 0)
test::check_equivalent_keys(x);
}
BOOST_TEST(x.empty());
}
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "extract(random position).\n";
{
test::check_instances check_;
test::random_values<Container> v(1000, generator);
Container x(v.begin(), v.end());
std::size_t size = x.size();
int iterations = 0;
while (size > 0 && !x.empty()) {
using namespace std;
int index = rand() % (int)x.size();
BOOST_DEDUCED_TYPENAME Container::const_iterator prev, pos, next;
if (index == 0) {
prev = pos = x.begin();
} else {
prev = boost::next(x.begin(), index - 1);
pos = boost::next(prev);
}
next = boost::next(pos);
BOOST_DEDUCED_TYPENAME Container::key_type key =
test::get_key<Container>(*pos);
std::size_t count = x.count(key);
typename Container::node_type n = x.extract(pos);
BOOST_TEST(n);
--size;
if (size > 0)
BOOST_TEST(
index == 0 ? next == x.begin() : next == boost::next(prev));
BOOST_TEST(x.count(key) == count - 1);
BOOST_TEST(x.size() == size);
if (++iterations % 20 == 0)
test::check_equivalent_keys(x);
}
BOOST_TEST(x.empty());
}
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "\n";
}
boost::unordered_set<test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_set;
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_multiset;
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_map;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::allocator2<test::object> >* test_multimap;
using test::default_generator;
using test::generate_collisions;
UNORDERED_TEST(
extract_tests1, ((test_set)(test_multiset)(test_map)(test_multimap))(
(default_generator)(generate_collisions)))
}
RUN_TESTS()

View File

@@ -0,0 +1,161 @@
// Copyright 2006-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include "../helpers/test.hpp"
#include "../objects/test.hpp"
#include "../helpers/random_values.hpp"
#include "../helpers/tracker.hpp"
#include "../helpers/helpers.hpp"
namespace find_tests {
test::seed_t initialize_seed(78937);
template <class X> void find_tests1(X*, test::random_generator generator)
{
typedef BOOST_DEDUCED_TYPENAME X::iterator iterator;
{
test::check_instances check_;
test::random_values<X> v(500, generator);
X x(v.begin(), v.end());
X const& x_const = x;
test::ordered<X> tracker = test::create_ordered(x);
tracker.insert_range(v.begin(), v.end());
for (BOOST_DEDUCED_TYPENAME test::ordered<X>::const_iterator it1 =
tracker.begin();
it1 != tracker.end(); ++it1) {
BOOST_DEDUCED_TYPENAME X::key_type key = test::get_key<X>(*it1);
BOOST_DEDUCED_TYPENAME X::const_iterator const_pos = x_const.find(key);
iterator pos = x.find(key);
BOOST_TEST(const_pos != x_const.end());
BOOST_TEST(const_pos != x_const.end() &&
x_const.key_eq()(key, test::get_key<X>(*const_pos)));
BOOST_TEST(pos != x.end());
BOOST_TEST(pos != x.end() && x.key_eq()(key, test::get_key<X>(*pos)));
BOOST_TEST(x.count(key) == tracker.count(key));
test::compare_pairs(x.equal_range(key), tracker.equal_range(key),
(BOOST_DEDUCED_TYPENAME X::value_type*)0);
test::compare_pairs(x_const.equal_range(key), tracker.equal_range(key),
(BOOST_DEDUCED_TYPENAME X::value_type*)0);
}
test::random_values<X> v2(500, generator);
for (BOOST_DEDUCED_TYPENAME test::random_values<X>::const_iterator it2 =
v2.begin();
it2 != v2.end(); ++it2) {
BOOST_DEDUCED_TYPENAME X::key_type key = test::get_key<X>(*it2);
if (tracker.find(test::get_key<X>(key)) == tracker.end()) {
BOOST_TEST(x.find(key) == x.end());
BOOST_TEST(x_const.find(key) == x_const.end());
BOOST_TEST(x.count(key) == 0);
std::pair<iterator, iterator> range = x.equal_range(key);
BOOST_TEST(range.first == range.second);
}
}
}
{
test::check_instances check_;
X x;
test::random_values<X> v2(5, generator);
for (BOOST_DEDUCED_TYPENAME test::random_values<X>::const_iterator it3 =
v2.begin();
it3 != v2.end(); ++it3) {
BOOST_DEDUCED_TYPENAME X::key_type key = test::get_key<X>(*it3);
BOOST_TEST(x.find(key) == x.end());
BOOST_TEST(x.count(key) == 0);
std::pair<iterator, iterator> range = x.equal_range(key);
BOOST_TEST(range.first == range.second);
}
}
}
struct compatible_key
{
test::object o_;
compatible_key(test::object const& o) : o_(o) {}
};
struct compatible_hash
{
test::hash hash_;
std::size_t operator()(compatible_key const& k) const
{
return hash_(k.o_);
}
};
struct compatible_predicate
{
test::equal_to equal_;
bool operator()(compatible_key const& k1, compatible_key const& k2) const
{
return equal_(k1.o_, k2.o_);
}
};
template <class X>
void find_compatible_keys_test(X*, test::random_generator generator)
{
typedef BOOST_DEDUCED_TYPENAME test::random_values<X>::iterator
value_iterator;
test::random_values<X> v(500, generator);
X x(v.begin(), v.end());
compatible_hash h;
compatible_predicate eq;
for (value_iterator it = v.begin(), end = v.end(); it != end; ++it) {
BOOST_DEDUCED_TYPENAME X::key_type key = test::get_key<X>(*it);
BOOST_TEST(x.find(key) == x.find(compatible_key(key), h, eq));
}
test::random_values<X> v2(20, generator);
for (value_iterator it = v2.begin(), end = v2.end(); it != end; ++it) {
BOOST_DEDUCED_TYPENAME X::key_type key = test::get_key<X>(*it);
BOOST_TEST(x.find(key) == x.find(compatible_key(key), h, eq));
}
}
boost::unordered_set<test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_set;
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_multiset;
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_map;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::allocator1<test::object> >* test_multimap;
using test::default_generator;
using test::generate_collisions;
using test::limited_range;
UNORDERED_TEST(
find_tests1, ((test_set)(test_multiset)(test_map)(test_multimap))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(find_compatible_keys_test,
((test_set)(test_multiset)(test_map)(test_multimap))(
(default_generator)(generate_collisions)(limited_range)))
}
RUN_TESTS()

View File

@@ -0,0 +1,81 @@
// Copyright 2008-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered/unordered_map_fwd.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
template <typename T>
void call_swap(boost::unordered_map<T, T>& x, boost::unordered_map<T, T>& y)
{
swap(x, y);
}
template <typename T>
bool call_equals(boost::unordered_map<T, T>& x, boost::unordered_map<T, T>& y)
{
return x == y;
}
template <typename T>
bool call_not_equals(
boost::unordered_map<T, T>& x, boost::unordered_map<T, T>& y)
{
return x != y;
}
template <typename T>
void call_swap(
boost::unordered_multimap<T, T>& x, boost::unordered_multimap<T, T>& y)
{
swap(x, y);
}
template <typename T>
bool call_equals(
boost::unordered_multimap<T, T>& x, boost::unordered_multimap<T, T>& y)
{
return x == y;
}
template <typename T>
bool call_not_equals(
boost::unordered_multimap<T, T>& x, boost::unordered_multimap<T, T>& y)
{
return x != y;
}
#include <boost/unordered_map.hpp>
#include "../helpers/test.hpp"
typedef boost::unordered_map<int, int> int_map;
typedef boost::unordered_multimap<int, int> int_multimap;
UNORDERED_AUTO_TEST (use_map_fwd_declared_function) {
int_map x, y;
x[1] = 2;
y[2] = 1;
call_swap(x, y);
BOOST_TEST(y.find(1) != y.end() && y.find(1)->second == 2);
BOOST_TEST(y.find(2) == y.end());
BOOST_TEST(x.find(1) == x.end());
BOOST_TEST(x.find(2) != x.end() && x.find(2)->second == 1);
BOOST_TEST(!call_equals(x, y));
BOOST_TEST(call_not_equals(x, y));
}
UNORDERED_AUTO_TEST (use_multimap_fwd_declared_function) {
int_multimap x, y;
call_swap(x, y);
BOOST_TEST(call_equals(x, y));
BOOST_TEST(!call_not_equals(x, y));
}
RUN_TESTS()

View File

@@ -0,0 +1,106 @@
// Copyright 2008-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered/unordered_set_fwd.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
struct true_type
{
char x[100];
};
struct false_type
{
char x;
};
false_type is_unordered_set_impl(void*);
template <class Value, class Hash, class Pred, class Alloc>
true_type is_unordered_set_impl(
boost::unordered_set<Value, Hash, Pred, Alloc>*);
template <typename T>
void call_swap(boost::unordered_set<T>& x, boost::unordered_set<T>& y)
{
swap(x, y);
}
template <typename T>
bool call_equals(boost::unordered_set<T>& x, boost::unordered_set<T>& y)
{
return x == y;
}
template <typename T>
bool call_not_equals(boost::unordered_set<T>& x, boost::unordered_set<T>& y)
{
return x != y;
}
template <typename T>
void call_swap(boost::unordered_multiset<T>& x, boost::unordered_multiset<T>& y)
{
swap(x, y);
}
template <typename T>
bool call_equals(
boost::unordered_multiset<T>& x, boost::unordered_multiset<T>& y)
{
return x == y;
}
template <typename T>
bool call_not_equals(
boost::unordered_multiset<T>& x, boost::unordered_multiset<T>& y)
{
return x != y;
}
#include "../helpers/test.hpp"
typedef boost::unordered_set<int> int_set;
typedef boost::unordered_multiset<int> int_multiset;
UNORDERED_AUTO_TEST (use_fwd_declared_trait_without_definition) {
BOOST_TEST(sizeof(is_unordered_set_impl((int_set*)0)) == sizeof(true_type));
}
#include <boost/unordered_set.hpp>
UNORDERED_AUTO_TEST (use_fwd_declared_trait) {
boost::unordered_set<int> x;
BOOST_TEST(sizeof(is_unordered_set_impl(&x)) == sizeof(true_type));
BOOST_TEST(sizeof(is_unordered_set_impl((int*)0)) == sizeof(false_type));
}
UNORDERED_AUTO_TEST (use_set_fwd_declared_function) {
int_set x, y;
x.insert(1);
y.insert(2);
call_swap(x, y);
BOOST_TEST(y.find(1) != y.end());
BOOST_TEST(y.find(2) == y.end());
BOOST_TEST(x.find(1) == x.end());
BOOST_TEST(x.find(2) != x.end());
BOOST_TEST(!call_equals(x, y));
BOOST_TEST(call_not_equals(x, y));
}
UNORDERED_AUTO_TEST (use_multiset_fwd_declared_function) {
int_multiset x, y;
call_swap(x, y);
BOOST_TEST(call_equals(x, y));
BOOST_TEST(!call_not_equals(x, y));
}
RUN_TESTS()

View File

@@ -0,0 +1,173 @@
// Copyright 2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_map.hpp>
#include <boost/unordered_set.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include <utility>
namespace x {
struct D
{
boost::unordered_map<D, D> x;
};
}
namespace incomplete_test {
// Declare, but don't define some types.
struct value;
struct hash;
struct equals;
template <class T> struct allocator;
// Declare some instances
typedef boost::unordered_map<value, value, hash, equals,
allocator<std::pair<value const, value> > >
map;
typedef boost::unordered_multimap<value, value, hash, equals,
allocator<std::pair<value const, value> > >
multimap;
typedef boost::unordered_set<value, hash, equals, allocator<value> > set;
typedef boost::unordered_multiset<value, hash, equals, allocator<value> >
multiset;
// Now define the types which are stored as members, as they are needed for
// declaring struct members.
struct hash
{
template <typename T> std::size_t operator()(T const&) const { return 0; }
};
struct equals
{
template <typename T> bool operator()(T const&, T const&) const
{
return true;
}
};
// This is a dubious way to implement an allocator, but good enough
// for this test.
template <typename T> struct allocator : std::allocator<T>
{
allocator() {}
template <typename T2>
allocator(const allocator<T2>& other) : std::allocator<T>(other)
{
}
template <typename T2>
allocator(const std::allocator<T2>& other) : std::allocator<T>(other)
{
}
};
// Declare some members of a structs.
//
// Incomplete hash, equals and allocator aren't here supported at the
// moment.
struct struct1
{
boost::unordered_map<struct1, struct1, hash, equals,
allocator<std::pair<struct1 const, struct1> > >
x;
};
struct struct2
{
boost::unordered_multimap<struct2, struct2, hash, equals,
allocator<std::pair<struct2 const, struct2> > >
x;
};
struct struct3
{
boost::unordered_set<struct3, hash, equals, allocator<struct3> > x;
};
struct struct4
{
boost::unordered_multiset<struct4, hash, equals, allocator<struct4> > x;
};
// Now define the value type.
struct value
{
};
// Create some instances.
incomplete_test::map m1;
incomplete_test::multimap m2;
incomplete_test::set s1;
incomplete_test::multiset s2;
incomplete_test::struct1 c1;
incomplete_test::struct2 c2;
incomplete_test::struct3 c3;
incomplete_test::struct4 c4;
// Now declare, but don't define, the operators required for comparing
// elements.
std::size_t hash_value(value const&);
bool operator==(value const&, value const&);
std::size_t hash_value(struct1 const&);
std::size_t hash_value(struct2 const&);
std::size_t hash_value(struct3 const&);
std::size_t hash_value(struct4 const&);
bool operator==(struct1 const&, struct1 const&);
bool operator==(struct2 const&, struct2 const&);
bool operator==(struct3 const&, struct3 const&);
bool operator==(struct4 const&, struct4 const&);
// And finally use these
void use_types()
{
incomplete_test::value x;
m1[x] = x;
m2.insert(std::make_pair(x, x));
s1.insert(x);
s2.insert(x);
c1.x.insert(std::make_pair(c1, c1));
c2.x.insert(std::make_pair(c2, c2));
c3.x.insert(c3);
c4.x.insert(c4);
}
// And finally define the operators required for comparing elements.
std::size_t hash_value(value const&) { return 0; }
bool operator==(value const&, value const&) { return true; }
std::size_t hash_value(struct1 const&) { return 0; }
std::size_t hash_value(struct2 const&) { return 0; }
std::size_t hash_value(struct3 const&) { return 0; }
std::size_t hash_value(struct4 const&) { return 0; }
bool operator==(struct1 const&, struct1 const&) { return true; }
bool operator==(struct2 const&, struct2 const&) { return true; }
bool operator==(struct3 const&, struct3 const&) { return true; }
bool operator==(struct4 const&, struct4 const&) { return true; }
}
int main()
{
// This could just be a compile test, but I like to be able to run these
// things. It's probably irrational, but I find it reassuring.
incomplete_test::use_types();
}

View File

@@ -0,0 +1,121 @@
// Copyright 2016 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include "../helpers/test.hpp"
#include "../helpers/invariants.hpp"
#include <map>
#include <set>
namespace insert_hint {
UNORDERED_AUTO_TEST (insert_hint_empty) {
typedef boost::unordered_multiset<int> container;
container x;
x.insert(x.cbegin(), 10);
BOOST_TEST_EQ(x.size(), 1u);
BOOST_TEST_EQ(x.count(10), 1u);
test::check_equivalent_keys(x);
}
UNORDERED_AUTO_TEST (insert_hint_empty2) {
typedef boost::unordered_multimap<std::string, int> container;
container x;
x.emplace_hint(x.cbegin(), "hello", 50);
BOOST_TEST_EQ(x.size(), 1u);
BOOST_TEST_EQ(x.count("hello"), 1u);
BOOST_TEST_EQ(x.find("hello")->second, 50);
test::check_equivalent_keys(x);
}
UNORDERED_AUTO_TEST (insert_hint_single) {
typedef boost::unordered_multiset<std::string> container;
container x;
x.insert("equal");
x.insert(x.cbegin(), "equal");
BOOST_TEST_EQ(x.size(), 2u);
BOOST_TEST_EQ(x.count("equal"), 2u);
test::check_equivalent_keys(x);
}
UNORDERED_AUTO_TEST (insert_hint_single2) {
typedef boost::unordered_multimap<int, std::string> container;
container x;
x.emplace(10, "one");
x.emplace_hint(x.cbegin(), 10, "two");
BOOST_TEST_EQ(x.size(), 2u);
BOOST_TEST_EQ(x.count(10), 2u);
container::iterator it = x.find(10);
std::string v0 = (it++)->second;
std::string v1 = (it++)->second;
BOOST_TEST(v0 == "one" || v0 == "two");
BOOST_TEST(v1 == "one" || v1 == "two");
BOOST_TEST(v0 != v1);
test::check_equivalent_keys(x);
}
UNORDERED_AUTO_TEST (insert_hint_multiple) {
for (unsigned int size = 0; size < 10; ++size) {
for (unsigned int offset = 0; offset <= size; ++offset) {
typedef boost::unordered_multiset<std::string> container;
container x;
for (unsigned int i = 0; i < size; ++i) {
x.insert("multiple");
}
BOOST_TEST_EQ(x.size(), size);
container::const_iterator position = x.cbegin();
for (unsigned int i = 0; i < offset; ++i) {
++position;
}
x.insert(position, "multiple");
BOOST_TEST_EQ(x.size(), size + 1u);
BOOST_TEST_EQ(x.count("multiple"), size + 1u);
test::check_equivalent_keys(x);
}
}
}
UNORDERED_AUTO_TEST (insert_hint_unique) {
typedef boost::unordered_set<int> container;
container x;
x.insert(x.cbegin(), 10);
BOOST_TEST_EQ(x.size(), 1u);
BOOST_TEST_EQ(x.count(10), 1u);
test::check_equivalent_keys(x);
}
UNORDERED_AUTO_TEST (insert_hint_unique_single) {
typedef boost::unordered_set<int> container;
container x;
x.insert(10);
x.insert(x.cbegin(), 10);
BOOST_TEST_EQ(x.size(), 1u);
BOOST_TEST_EQ(x.count(10), 1u);
test::check_equivalent_keys(x);
x.insert(x.cbegin(), 20);
BOOST_TEST_EQ(x.size(), 2u);
BOOST_TEST_EQ(x.count(10), 1u);
BOOST_TEST_EQ(x.count(20), 1u);
test::check_equivalent_keys(x);
}
}
RUN_TESTS()

View File

@@ -0,0 +1,34 @@
// Copyright 2017 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/unordered_map.hpp>
#include <boost/unordered_set.hpp>
int main()
{
#if defined(UNORDERED_TEST_MAP)
typedef boost::unordered_map<int, int> container;
container x;
x.emplace(1, 1);
#elif defined(UNORDERED_TEST_MULTIMAP)
typedef boost::unordered_multimap<int, int> container;
container x;
#elif defined(UNORDERED_TEST_SET)
typedef boost::unordered_set<int> container;
container x;
x.emplace(1);
#elif defined(UNORDERED_TEST_MULTISET)
typedef boost::unordered_multiset<int> container;
container x;
x.emplace(1);
#else
#define UNORDERED_ERROR
#endif
#if !defined(UNORDERED_ERROR)
container::node_type n = x.extract(x.begin());
x.insert(n);
#endif
}

View File

@@ -0,0 +1,117 @@
// Copyright 2007-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include "../helpers/test.hpp"
namespace insert_stable {
struct member
{
int tag1_;
int tag2_;
member() : tag1_(0), tag2_(0) {}
member(int t1, int t2) : tag1_(t1), tag2_(t2) {}
friend bool operator==(member const& x, member const& y)
{
return x.tag1_ == y.tag1_;
}
friend bool operator!=(member const& x, member const& y)
{
return x.tag1_ != y.tag1_;
}
};
}
#ifdef BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP
namespace boost
#else
namespace insert_stable
#endif
{
std::size_t hash_value(insert_stable::member const& x)
{
return static_cast<std::size_t>(x.tag1_);
}
}
// This is no longer supported, as there's no longer an efficient way to get to
// the end of a group of equivalent nodes.
#if 0
UNORDERED_AUTO_TEST(stable_insert_test1)
{
boost::unordered_multiset<insert_stable::member> x;
x.insert(insert_stable::member(1, 1));
x.insert(insert_stable::member(1, 2));
x.insert(insert_stable::member(1, 3));
BOOST_TEST(x.count(insert_stable::member(1, 4)) == 3);
boost::unordered_multiset<insert_stable::member>::const_iterator
it = x.begin(),
end = x.end();
BOOST_TEST(it != end);
if (it != end) {
BOOST_TEST(it->tag2_ == 1);
++it;
}
BOOST_TEST(it != end);
if (it != end) {
BOOST_TEST(it->tag2_ == 2);
++it;
}
BOOST_TEST(it != end);
if (it != end) {
BOOST_TEST(it->tag2_ == 3);
++it;
}
BOOST_TEST(it == end);
}
UNORDERED_AUTO_TEST(stable_insert_test2)
{
boost::unordered_multimap<insert_stable::member, int> x;
typedef boost::unordered_multimap<insert_stable::member,
int>::const_iterator iterator;
iterator it = x.emplace(insert_stable::member(1, 1), 1);
it = x.emplace(insert_stable::member(1, 2), 2);
it = x.emplace(insert_stable::member(1, 3), 3);
BOOST_TEST(x.count(insert_stable::member(1, 4)) == 3);
it = x.begin();
iterator end = x.end();
BOOST_TEST(it != end);
if (it != end) {
BOOST_TEST(it->first.tag2_ == 1 && it->second == 1);
++it;
}
BOOST_TEST(it != end);
if (it != end) {
BOOST_TEST(it->first.tag2_ == 2 && it->second == 2);
++it;
}
BOOST_TEST(it != end);
if (it != end) {
BOOST_TEST(it->first.tag2_ == 3 && it->second == 3);
++it;
}
BOOST_TEST(it == end);
}
#endif
RUN_TESTS()

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,26 @@
// Copyright 2006-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
void foo(boost::unordered_set<int>&, boost::unordered_map<int, int>&,
boost::unordered_multiset<int>&, boost::unordered_multimap<int, int>&);
int main()
{
boost::unordered_set<int> x1;
boost::unordered_map<int, int> x2;
boost::unordered_multiset<int> x3;
boost::unordered_multimap<int, int> x4;
foo(x1, x2, x3, x4);
return 0;
}

View File

@@ -0,0 +1,30 @@
// Copyright 2006-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
void foo(boost::unordered_set<int>& x1, boost::unordered_map<int, int>& x2,
boost::unordered_multiset<int>& x3, boost::unordered_multimap<int, int>& x4)
{
#if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613))
struct dummy
{
boost::unordered_set<int> x1;
boost::unordered_map<int, int> x2;
boost::unordered_multiset<int> x3;
boost::unordered_multimap<int, int> x4;
};
#endif
x1.insert(1);
x2[2] = 2;
x3.insert(3);
x4.insert(std::make_pair(4, 5));
}

View File

@@ -0,0 +1,98 @@
// Copyright 2006-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include "../helpers/test.hpp"
#include <boost/limits.hpp>
#include "../helpers/random_values.hpp"
#if defined(BOOST_MSVC)
#pragma warning(push)
#pragma warning(disable : 4127) // conditional expression is constant
#endif
namespace load_factor_tests {
test::seed_t initialize_seed(783656);
template <class X> void set_load_factor_tests(X*)
{
X x;
BOOST_TEST(x.max_load_factor() == 1.0);
BOOST_TEST(x.load_factor() == 0);
// A valid implementation could fail these tests, but I think they're
// reasonable.
x.max_load_factor(2.0);
BOOST_TEST(x.max_load_factor() == 2.0);
x.max_load_factor(0.5);
BOOST_TEST(x.max_load_factor() == 0.5);
}
template <class X>
void insert_test(X*, float mlf, test::random_generator generator)
{
X x;
x.max_load_factor(mlf);
float b = x.max_load_factor();
test::random_values<X> values(1000, generator);
for (BOOST_DEDUCED_TYPENAME test::random_values<X>::const_iterator
it = values.begin(),
end = values.end();
it != end; ++it) {
BOOST_DEDUCED_TYPENAME X::size_type old_size = x.size(),
old_bucket_count = x.bucket_count();
x.insert(*it);
if (static_cast<double>(old_size + 1) <=
b * static_cast<double>(old_bucket_count))
BOOST_TEST(x.bucket_count() == old_bucket_count);
}
}
template <class X>
void load_factor_insert_tests(X* ptr, test::random_generator generator)
{
insert_test(ptr, 1.0f, generator);
insert_test(ptr, 0.1f, generator);
insert_test(ptr, 100.0f, generator);
insert_test(ptr, (std::numeric_limits<float>::min)(), generator);
if (std::numeric_limits<float>::has_infinity)
insert_test(ptr, std::numeric_limits<float>::infinity(), generator);
}
boost::unordered_set<int>* int_set_ptr;
boost::unordered_multiset<int>* int_multiset_ptr;
boost::unordered_map<int, int>* int_map_ptr;
boost::unordered_multimap<int, int>* int_multimap_ptr;
using test::default_generator;
using test::generate_collisions;
using test::limited_range;
UNORDERED_TEST(set_load_factor_tests,
((int_set_ptr)(int_multiset_ptr)(int_map_ptr)(int_multimap_ptr)))
UNORDERED_TEST(load_factor_insert_tests,
((int_set_ptr)(int_multiset_ptr)(int_map_ptr)(int_multimap_ptr))(
(default_generator)(generate_collisions)(limited_range)))
}
RUN_TESTS()
#if defined(BOOST_MSVC)
#pragma warning(pop)
#pragma warning(disable : 4127) // conditional expression is constant
#endif

View File

@@ -0,0 +1,338 @@
// Copyright 2016 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include "../helpers/postfix.hpp"
#include "../helpers/prefix.hpp"
#include <boost/unordered_map.hpp>
#include <boost/unordered_set.hpp>
#include "../helpers/count.hpp"
#include "../helpers/helpers.hpp"
#include "../helpers/invariants.hpp"
#include "../helpers/random_values.hpp"
#include "../helpers/test.hpp"
#include "../helpers/tracker.hpp"
#include "../objects/test.hpp"
#include <boost/next_prior.hpp>
namespace merge_tests {
UNORDERED_AUTO_TEST (merge_set) {
boost::unordered_set<int> x;
boost::unordered_set<int> y;
x.merge(y);
BOOST_TEST(x.empty());
BOOST_TEST(y.empty());
x.insert(10);
x.merge(y);
BOOST_TEST(x.size() == 1);
BOOST_TEST(x.count(10) == 1);
BOOST_TEST(y.empty());
y.merge(x);
BOOST_TEST(x.empty());
BOOST_TEST(y.size() == 1);
BOOST_TEST(y.count(10) == 1);
x.insert(10);
x.insert(50);
y.insert(70);
y.insert(80);
x.merge(y);
BOOST_TEST_EQ(x.size(), 4u);
BOOST_TEST_EQ(y.size(), 1u);
BOOST_TEST_EQ(x.count(10), 1u);
BOOST_TEST_EQ(x.count(50), 1u);
BOOST_TEST_EQ(x.count(70), 1u);
BOOST_TEST_EQ(x.count(80), 1u);
BOOST_TEST_EQ(y.count(10), 1u);
BOOST_TEST_EQ(y.count(50), 0u);
BOOST_TEST_EQ(y.count(70), 0u);
BOOST_TEST_EQ(y.count(80), 0u);
test::check_equivalent_keys(x);
test::check_equivalent_keys(y);
}
UNORDERED_AUTO_TEST (merge_multiset) {
boost::unordered_multiset<int> x;
boost::unordered_multiset<int> y;
x.merge(y);
BOOST_TEST(x.empty());
BOOST_TEST(y.empty());
x.insert(10);
x.merge(y);
BOOST_TEST(x.size() == 1);
BOOST_TEST(x.count(10) == 1);
BOOST_TEST(y.empty());
y.merge(x);
BOOST_TEST(x.empty());
BOOST_TEST(y.size() == 1);
BOOST_TEST(y.count(10) == 1);
x.insert(10);
x.insert(50);
y.insert(70);
y.insert(80);
x.merge(y);
BOOST_TEST_EQ(x.size(), 5u);
BOOST_TEST_EQ(y.size(), 0u);
BOOST_TEST_EQ(x.count(10), 2u);
BOOST_TEST_EQ(x.count(50), 1u);
BOOST_TEST_EQ(x.count(70), 1u);
BOOST_TEST_EQ(x.count(80), 1u);
BOOST_TEST_EQ(y.count(10), 0u);
BOOST_TEST_EQ(y.count(50), 0u);
BOOST_TEST_EQ(y.count(70), 0u);
BOOST_TEST_EQ(y.count(80), 0u);
test::check_equivalent_keys(x);
test::check_equivalent_keys(y);
}
UNORDERED_AUTO_TEST (merge_set_and_multiset) {
boost::unordered_set<int> x;
boost::unordered_multiset<int> y;
x.merge(y);
BOOST_TEST(x.empty());
BOOST_TEST(y.empty());
x.insert(10);
x.merge(y);
BOOST_TEST(x.size() == 1);
BOOST_TEST(x.count(10) == 1);
BOOST_TEST(y.empty());
y.merge(x);
BOOST_TEST(x.empty());
BOOST_TEST(y.size() == 1);
BOOST_TEST(y.count(10) == 1);
x.insert(10);
x.insert(50);
y.insert(70);
y.insert(80);
x.merge(y);
BOOST_TEST_EQ(x.size(), 4u);
BOOST_TEST_EQ(y.size(), 1u);
BOOST_TEST_EQ(x.count(10), 1u);
BOOST_TEST_EQ(x.count(50), 1u);
BOOST_TEST_EQ(x.count(70), 1u);
BOOST_TEST_EQ(x.count(80), 1u);
BOOST_TEST_EQ(y.count(10), 1u);
BOOST_TEST_EQ(y.count(50), 0u);
BOOST_TEST_EQ(y.count(70), 0u);
BOOST_TEST_EQ(y.count(80), 0u);
test::check_equivalent_keys(x);
test::check_equivalent_keys(y);
}
template <class X1, class X2>
void merge_empty_test(X1*, X2*, test::random_generator generator)
{
test::check_instances check_;
test::random_values<X1> v(1000, generator);
X1 x1(v.begin(), v.end());
X2 x2;
x1.merge(x2);
test::check_container(x1, v);
BOOST_TEST(x2.empty());
test::check_equivalent_keys(x1);
test::check_equivalent_keys(x2);
}
template <class X>
void merge_into_empty_test(X*, test::random_generator generator)
{
test::check_instances check_;
test::random_values<X> v(1000, generator);
X x1;
X x2(v.begin(), v.end());
x1.merge(x2);
test::check_container(x1, v);
BOOST_TEST(x2.empty());
test::check_equivalent_keys(x1);
test::check_equivalent_keys(x2);
}
template <class X1, class X2>
void merge_into_unique_keys_test(X1*, X2*, int hash_equal1, int hash_equal2,
test::random_generator generator)
{
test::check_instances check_;
test::random_values<X1> v1(1000, generator);
test::random_values<X2> v2(1000, generator);
v1.insert(v2.begin(), boost::next(v2.begin(), 100));
v2.insert(v1.begin(), boost::next(v1.begin(), 100));
X1 x1(v1.begin(), v1.end(), 0, test::hash(hash_equal1),
test::equal_to(hash_equal1));
X2 x2(v2.begin(), v2.end(), 0, test::hash(hash_equal2),
test::equal_to(hash_equal2));
test::ordered<X1> tracker1 = test::create_ordered(x1);
test::ordered<X2> tracker2 = test::create_ordered(x2);
tracker1.insert(v1.begin(), v1.end());
for (typename X2::iterator it = x2.begin(); it != x2.end(); ++it) {
if (!tracker1.insert(*it).second) {
tracker2.insert(*it);
}
}
x1.merge(x2);
tracker1.compare(x1);
tracker2.compare(x2);
test::check_equivalent_keys(x1);
test::check_equivalent_keys(x2);
}
template <class X1, class X2>
void merge_into_equiv_keys_test(X1*, X2*, int hash_equal1, int hash_equal2,
test::random_generator generator)
{
test::check_instances check_;
test::random_values<X1> v1(1000, generator);
test::random_values<X2> v2(1000, generator);
v1.insert(v2.begin(), boost::next(v2.begin(), 100));
v2.insert(v1.begin(), boost::next(v1.begin(), 100));
X1 x1(v1.begin(), v1.end(), 0, test::hash(hash_equal1),
test::equal_to(hash_equal1));
X2 x2(v2.begin(), v2.end(), 0, test::hash(hash_equal2),
test::equal_to(hash_equal2));
x1.merge(x2);
test::ordered<X1> tracker1 = test::create_ordered(x1);
test::ordered<X2> tracker2 = test::create_ordered(x2);
tracker1.insert(v1.begin(), v1.end());
tracker2.insert(v2.begin(), v2.end());
tracker1.insert(tracker2.begin(), tracker2.end());
tracker2.clear();
tracker1.compare(x1);
tracker2.compare(x2);
test::check_equivalent_keys(x1);
test::check_equivalent_keys(x2);
}
boost::unordered_set<test::movable, test::hash, test::equal_to,
std::allocator<test::movable> >* test_set_std_alloc;
boost::unordered_multiset<test::movable, test::hash, test::equal_to,
std::allocator<test::movable> >* test_multiset_std_alloc;
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
std::allocator<test::object> >* test_map_std_alloc;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, std::allocator<test::object> >* test_multimap_std_alloc;
boost::unordered_set<test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_set;
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_multiset;
boost::unordered_map<test::movable, test::movable, test::hash, test::equal_to,
test::allocator2<test::movable> >* test_map;
boost::unordered_multimap<test::movable, test::movable, test::hash,
test::equal_to, test::allocator2<test::movable> >* test_multimap;
using test::default_generator;
using test::generate_collisions;
// clang-format off
UNORDERED_TEST(merge_empty_test,
((test_set_std_alloc)(test_multiset_std_alloc))
((test_set_std_alloc)(test_multiset_std_alloc))
((default_generator)(generate_collisions)))
UNORDERED_TEST(merge_empty_test,
((test_map_std_alloc)(test_multimap_std_alloc))
((test_map_std_alloc)(test_multimap_std_alloc))
((default_generator)(generate_collisions)))
UNORDERED_TEST(merge_empty_test,
((test_set)(test_multiset))
((test_set)(test_multiset))
((default_generator)(generate_collisions)))
UNORDERED_TEST(merge_empty_test,
((test_map)(test_multimap))
((test_map)(test_multimap))
((default_generator)(generate_collisions)))
UNORDERED_TEST(merge_into_empty_test,
((test_set_std_alloc)(test_multiset_std_alloc))
((default_generator)(generate_collisions)))
UNORDERED_TEST(merge_into_empty_test,
((test_map_std_alloc)(test_multimap_std_alloc))
((default_generator)(generate_collisions)))
UNORDERED_TEST(merge_into_empty_test,
((test_set)(test_multiset))
((default_generator)(generate_collisions)))
UNORDERED_TEST(merge_into_empty_test,
((test_map)(test_multimap))
((default_generator)(generate_collisions)))
UNORDERED_TEST(merge_into_unique_keys_test,
((test_set_std_alloc))
((test_set_std_alloc)(test_multiset_std_alloc))
((0)(1)(2))
((0)(1)(2))
((default_generator)(generate_collisions)))
UNORDERED_TEST(merge_into_unique_keys_test,
((test_map_std_alloc))
((test_map_std_alloc)(test_multimap_std_alloc))
((0)(1)(2))
((0)(1)(2))
((default_generator)(generate_collisions)))
UNORDERED_TEST(merge_into_unique_keys_test,
((test_set))
((test_set)(test_multiset))
((0)(1)(2))
((0)(1)(2))
((default_generator)(generate_collisions)))
UNORDERED_TEST(merge_into_unique_keys_test,
((test_map))
((test_map)(test_multimap))
((0)(1)(2))
((0)(1)(2))
((default_generator)(generate_collisions)))
UNORDERED_TEST(merge_into_equiv_keys_test,
((test_multiset_std_alloc))
((test_set_std_alloc)(test_multiset_std_alloc))
((0)(1)(2))
((0)(1)(2))
((default_generator)(generate_collisions)))
UNORDERED_TEST(merge_into_equiv_keys_test,
((test_multimap_std_alloc))
((test_map_std_alloc)(test_multimap_std_alloc))
((0)(1)(2))
((0)(1)(2))
((default_generator)(generate_collisions)))
UNORDERED_TEST(merge_into_equiv_keys_test,
((test_multiset))
((test_set)(test_multiset))
((0)(1)(2))
((0)(1)(2))
((default_generator)(generate_collisions)))
UNORDERED_TEST(merge_into_equiv_keys_test,
((test_multimap))
((test_map)(test_multimap))
((0)(1)(2))
((0)(1)(2))
((default_generator)(generate_collisions)))
// clang-format on
}
RUN_TESTS()

View File

@@ -0,0 +1,92 @@
// Copyright 2011 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include "../objects/test.hpp"
#include <boost/detail/lightweight_test.hpp>
#include <boost/static_assert.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/unordered/detail/implementation.hpp>
template <class Tp> struct SimpleAllocator
{
typedef Tp value_type;
SimpleAllocator() {}
template <class T> SimpleAllocator(const SimpleAllocator<T>&) {}
Tp* allocate(std::size_t n)
{
return static_cast<Tp*>(::operator new(n * sizeof(Tp)));
}
void deallocate(Tp* p, std::size_t) { ::operator delete((void*)p); }
};
template <typename T> void test_simple_allocator()
{
test::check_instances check_;
typedef boost::unordered::detail::allocator_traits<SimpleAllocator<T> >
traits;
BOOST_STATIC_ASSERT((boost::is_same<typename traits::allocator_type,
SimpleAllocator<T> >::value));
BOOST_STATIC_ASSERT((boost::is_same<typename traits::value_type, T>::value));
BOOST_STATIC_ASSERT((boost::is_same<typename traits::pointer, T*>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<typename traits::const_pointer, T const*>::value));
// BOOST_STATIC_ASSERT((boost::is_same<typename traits::void_pointer, void*
// >::value));
// BOOST_STATIC_ASSERT((boost::is_same<typename traits::const_void_pointer,
// void const*>::value));
BOOST_STATIC_ASSERT(
(boost::is_same<typename traits::difference_type, std::ptrdiff_t>::value));
#if BOOST_UNORDERED_USE_ALLOCATOR_TRAITS == 1
BOOST_STATIC_ASSERT((boost::is_same<typename traits::size_type,
std::make_unsigned<std::ptrdiff_t>::type>::value));
#else
BOOST_STATIC_ASSERT(
(boost::is_same<typename traits::size_type, std::size_t>::value));
#endif
BOOST_TEST(!traits::propagate_on_container_copy_assignment::value);
BOOST_TEST(!traits::propagate_on_container_move_assignment::value);
BOOST_TEST(!traits::propagate_on_container_swap::value);
// rebind_alloc
// rebind_traits
SimpleAllocator<T> a;
T* ptr1 = traits::allocate(a, 1);
// T* ptr2 = traits::allocate(a, 1, static_cast<void const*>(ptr1));
traits::construct(a, ptr1, T(10));
// traits::construct(a, ptr2, T(30), ptr1);
BOOST_TEST(*ptr1 == T(10));
// BOOST_TEST(*ptr2 == T(30));
traits::destroy(a, ptr1);
// traits::destroy(a, ptr2);
// traits::deallocate(a, ptr2, 1);
traits::deallocate(a, ptr1, 1);
traits::max_size(a);
}
int main()
{
test_simple_allocator<int>();
test_simple_allocator<test::object>();
return boost::report_errors();
}

View File

@@ -0,0 +1,372 @@
// Copyright 2008-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or move at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include "../helpers/test.hpp"
#include "../objects/test.hpp"
#include "../objects/cxx11_allocator.hpp"
#include "../helpers/random_values.hpp"
#include "../helpers/tracker.hpp"
#include "../helpers/equivalent.hpp"
#include "../helpers/invariants.hpp"
#if defined(BOOST_MSVC)
#pragma warning(disable : 4127) // conditional expression is constant
#endif
namespace move_tests {
test::seed_t initialize_seed(98624);
#if defined(BOOST_UNORDERED_USE_MOVE) || \
!defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
#define BOOST_UNORDERED_TEST_MOVING 1
#else
#define BOOST_UNORDERED_TEST_MOVING 0
#endif
template <class T> T empty(T*) { return T(); }
template <class T>
T create(test::random_values<T> const& v, test::object_count& count)
{
T x(v.begin(), v.end());
count = test::global_object_count;
return x;
}
template <class T>
T create(test::random_values<T> const& v, test::object_count& count,
BOOST_DEDUCED_TYPENAME T::hasher hf, BOOST_DEDUCED_TYPENAME T::key_equal eq,
BOOST_DEDUCED_TYPENAME T::allocator_type al, float mlf)
{
T x(0, hf, eq, al);
x.max_load_factor(mlf);
x.insert(v.begin(), v.end());
count = test::global_object_count;
return x;
}
template <class T>
void move_construct_tests1(T* ptr, test::random_generator const& generator)
{
BOOST_DEDUCED_TYPENAME T::hasher hf;
BOOST_DEDUCED_TYPENAME T::key_equal eq;
BOOST_DEDUCED_TYPENAME T::allocator_type al;
{
test::check_instances check_;
T y(empty(ptr));
BOOST_TEST(y.empty());
BOOST_TEST(test::equivalent(y.hash_function(), hf));
BOOST_TEST(test::equivalent(y.key_eq(), eq));
BOOST_TEST(test::equivalent(y.get_allocator(), al));
BOOST_TEST(y.max_load_factor() == 1.0);
test::check_equivalent_keys(y);
}
{
test::check_instances check_;
test::random_values<T> v(1000, generator);
test::object_count count;
T y(create(v, count));
#if defined(BOOST_HAS_NRVO)
BOOST_TEST(count == test::global_object_count);
#endif
test::check_container(y, v);
test::check_equivalent_keys(y);
}
}
template <class T>
void move_assign_tests1(T*, test::random_generator const& generator)
{
{
test::check_instances check_;
test::random_values<T> v(500, generator);
test::object_count count;
T y;
y = create(v, count);
#if BOOST_UNORDERED_TEST_MOVING && defined(BOOST_HAS_NRVO)
BOOST_TEST(count == test::global_object_count);
#endif
test::check_container(y, v);
test::check_equivalent_keys(y);
}
}
template <class T>
void move_construct_tests2(T*, test::random_generator const& generator)
{
BOOST_DEDUCED_TYPENAME T::hasher hf(1);
BOOST_DEDUCED_TYPENAME T::key_equal eq(1);
BOOST_DEDUCED_TYPENAME T::allocator_type al(1);
BOOST_DEDUCED_TYPENAME T::allocator_type al2(2);
test::object_count count;
{
test::check_instances check_;
test::random_values<T> v(500, generator);
T y(create(v, count, hf, eq, al, 0.5));
#if defined(BOOST_HAS_NRVO)
BOOST_TEST(count == test::global_object_count);
#endif
test::check_container(y, v);
BOOST_TEST(test::equivalent(y.hash_function(), hf));
BOOST_TEST(test::equivalent(y.key_eq(), eq));
BOOST_TEST(test::equivalent(y.get_allocator(), al));
BOOST_TEST(y.max_load_factor() == 0.5); // Not necessarily required.
test::check_equivalent_keys(y);
}
{
test::check_instances check_;
// TODO: To do this correctly requires the fancy new allocator
// stuff.
test::random_values<T> v(500, generator);
T y(create(v, count, hf, eq, al, 2.0), al2);
BOOST_TEST(count != test::global_object_count);
test::check_container(y, v);
BOOST_TEST(test::equivalent(y.hash_function(), hf));
BOOST_TEST(test::equivalent(y.key_eq(), eq));
BOOST_TEST(test::equivalent(y.get_allocator(), al2));
BOOST_TEST(y.max_load_factor() == 2.0); // Not necessarily required.
test::check_equivalent_keys(y);
}
{
test::check_instances check_;
test::random_values<T> v(25, generator);
T y(create(v, count, hf, eq, al, 1.0), al);
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
BOOST_TEST(count == test::global_object_count);
#elif defined(BOOST_HAS_NRVO)
BOOST_TEST(
static_cast<std::size_t>(
test::global_object_count.constructions - count.constructions) <=
(test::is_set<T>::value ? 1 : 2) *
(test::has_unique_keys<T>::value ? 25 : v.size()));
BOOST_TEST(count.instances == test::global_object_count.instances);
#else
BOOST_TEST(
static_cast<std::size_t>(
test::global_object_count.constructions - count.constructions) <=
(test::is_set<T>::value ? 2 : 4) *
(test::has_unique_keys<T>::value ? 25 : v.size()));
BOOST_TEST(count.instances == test::global_object_count.instances);
#endif
test::check_container(y, v);
BOOST_TEST(test::equivalent(y.hash_function(), hf));
BOOST_TEST(test::equivalent(y.key_eq(), eq));
BOOST_TEST(test::equivalent(y.get_allocator(), al));
BOOST_TEST(y.max_load_factor() == 1.0); // Not necessarily required.
test::check_equivalent_keys(y);
}
}
template <class T>
void move_assign_tests2(T*, test::random_generator const& generator)
{
BOOST_DEDUCED_TYPENAME T::hasher hf(1);
BOOST_DEDUCED_TYPENAME T::key_equal eq(1);
BOOST_DEDUCED_TYPENAME T::allocator_type al1(1);
BOOST_DEDUCED_TYPENAME T::allocator_type al2(2);
typedef BOOST_DEDUCED_TYPENAME T::allocator_type allocator_type;
{
test::random_values<T> v(500, generator);
test::random_values<T> v2(0, generator);
T y(v.begin(), v.end(), 0, hf, eq, al1);
test::object_count count;
y = create(v2, count, hf, eq, al2, 2.0);
BOOST_TEST(y.empty());
test::check_container(y, v2);
test::check_equivalent_keys(y);
BOOST_TEST(y.max_load_factor() == 2.0);
#if defined(BOOST_HAS_NRVO)
if (BOOST_UNORDERED_TEST_MOVING
? (bool)allocator_type::is_propagate_on_move
: (bool)allocator_type::is_propagate_on_assign) {
BOOST_TEST(test::equivalent(y.get_allocator(), al2));
} else {
BOOST_TEST(test::equivalent(y.get_allocator(), al1));
}
#endif
}
{
test::random_values<T> v(500, generator);
test::object_count count;
T y(0, hf, eq, al1);
y = create(v, count, hf, eq, al2, 0.5);
#if defined(BOOST_HAS_NRVO)
if (BOOST_UNORDERED_TEST_MOVING && allocator_type::is_propagate_on_move) {
BOOST_TEST(count == test::global_object_count);
}
#endif
test::check_container(y, v);
test::check_equivalent_keys(y);
BOOST_TEST(y.max_load_factor() == 0.5);
#if defined(BOOST_HAS_NRVO)
if (BOOST_UNORDERED_TEST_MOVING
? (bool)allocator_type::is_propagate_on_move
: (bool)allocator_type::is_propagate_on_assign) {
BOOST_TEST(test::equivalent(y.get_allocator(), al2));
} else {
BOOST_TEST(test::equivalent(y.get_allocator(), al1));
}
#endif
}
{
test::check_instances check_;
test::random_values<T> v(500, generator);
T y(0, hf, eq, al1);
T x(0, hf, eq, al2);
x.max_load_factor(0.25);
x.insert(v.begin(), v.end());
test::object_count count = test::global_object_count;
y = boost::move(x);
if (BOOST_UNORDERED_TEST_MOVING && allocator_type::is_propagate_on_move) {
BOOST_TEST(count == test::global_object_count);
}
test::check_container(y, v);
test::check_equivalent_keys(y);
BOOST_TEST(y.max_load_factor() == 0.25);
if (BOOST_UNORDERED_TEST_MOVING
? (bool)allocator_type::is_propagate_on_move
: (bool)allocator_type::is_propagate_on_assign) {
BOOST_TEST(test::equivalent(y.get_allocator(), al2));
} else {
BOOST_TEST(test::equivalent(y.get_allocator(), al1));
}
}
{
test::check_instances check_;
test::random_values<T> v1(1000, generator);
test::random_values<T> v2(200, generator);
T x(0, hf, eq, al2);
x.max_load_factor(0.5);
x.insert(v2.begin(), v2.end());
test::object_count count1 = test::global_object_count;
T y(v1.begin(), v1.end(), 0, hf, eq, al1);
y = boost::move(x);
test::object_count count2 = test::global_object_count;
if (BOOST_UNORDERED_TEST_MOVING && allocator_type::is_propagate_on_move) {
BOOST_TEST(count1.instances == test::global_object_count.instances);
BOOST_TEST(
count2.constructions == test::global_object_count.constructions);
}
test::check_container(y, v2);
test::check_equivalent_keys(y);
BOOST_TEST(y.max_load_factor() == 0.5);
if (BOOST_UNORDERED_TEST_MOVING
? (bool)allocator_type::is_propagate_on_move
: (bool)allocator_type::is_propagate_on_assign) {
BOOST_TEST(test::equivalent(y.get_allocator(), al2));
} else {
BOOST_TEST(test::equivalent(y.get_allocator(), al1));
}
}
}
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
std::allocator<test::object> >* test_map_std_alloc;
boost::unordered_set<test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_set;
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_multiset;
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_map;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::allocator2<test::object> >* test_multimap;
boost::unordered_set<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_move> >*
test_set_prop_move;
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_move> >*
test_multiset_prop_move;
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_move> >*
test_map_prop_move;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::cxx11_allocator<test::object, test::propagate_move> >*
test_multimap_prop_move;
boost::unordered_set<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_move> >*
test_set_no_prop_move;
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_move> >*
test_multiset_no_prop_move;
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_move> >*
test_map_no_prop_move;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_move> >*
test_multimap_no_prop_move;
using test::default_generator;
using test::generate_collisions;
using test::limited_range;
UNORDERED_TEST(move_construct_tests1,
((test_map_std_alloc)(test_set)(test_multiset)(test_map)(test_multimap)(
test_set_prop_move)(test_multiset_prop_move)(test_map_prop_move)(
test_multimap_prop_move)(test_set_no_prop_move)(
test_multiset_no_prop_move)(test_map_no_prop_move)(
test_multimap_no_prop_move))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(move_assign_tests1,
((test_map_std_alloc)(test_set)(test_multiset)(test_map)(test_multimap)(
test_set_prop_move)(test_multiset_prop_move)(test_map_prop_move)(
test_multimap_prop_move)(test_set_no_prop_move)(
test_multiset_no_prop_move)(test_map_no_prop_move)(
test_multimap_no_prop_move))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(move_construct_tests2,
((test_set)(test_multiset)(test_map)(test_multimap)(test_set_prop_move)(
test_multiset_prop_move)(test_map_prop_move)(test_multimap_prop_move)(
test_set_no_prop_move)(test_multiset_no_prop_move)(test_map_no_prop_move)(
test_multimap_no_prop_move))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(move_assign_tests2,
((test_set)(test_multiset)(test_map)(test_multimap)(test_set_prop_move)(
test_multiset_prop_move)(test_map_prop_move)(test_multimap_prop_move)(
test_set_no_prop_move)(test_multiset_no_prop_move)(test_map_no_prop_move)(
test_multimap_no_prop_move))(
(default_generator)(generate_collisions)(limited_range)))
}
RUN_TESTS()

View File

@@ -0,0 +1,426 @@
// Copyright 2016 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include "../helpers/postfix.hpp"
#include "../helpers/prefix.hpp"
#include <boost/unordered_map.hpp>
#include <boost/unordered_set.hpp>
#include "../helpers/helpers.hpp"
#include "../helpers/metafunctions.hpp"
#include "../helpers/test.hpp"
#include <boost/static_assert.hpp>
#include <boost/type_traits/is_same.hpp>
#include <set>
#include <string>
UNORDERED_AUTO_TEST (example1) {
typedef boost::unordered_map<int, std::string>::insert_return_type
insert_return_type;
boost::unordered_map<int, std::string> src;
src.emplace(1, "one");
src.emplace(2, "two");
src.emplace(3, "buckle my shoe");
boost::unordered_map<int, std::string> dst;
dst.emplace(3, "three");
dst.insert(src.extract(src.find(1)));
dst.insert(src.extract(2));
insert_return_type r = dst.insert(src.extract(3));
BOOST_TEST(src.empty());
BOOST_TEST(dst.size() == 3);
BOOST_TEST(dst[1] == "one");
BOOST_TEST(dst[2] == "two");
BOOST_TEST(dst[3] == "three");
BOOST_TEST(!r.inserted);
BOOST_TEST(r.position == dst.find(3));
BOOST_TEST(r.node.mapped() == "buckle my shoe");
}
UNORDERED_AUTO_TEST (example2) {
boost::unordered_set<int> src;
src.insert(1);
src.insert(3);
src.insert(5);
boost::unordered_set<int> dst;
dst.insert(2);
dst.insert(4);
dst.insert(5);
// dst.merge(src);
// Merge src into dst.
// src == {5}
// dst == {1, 2, 3, 4, 5}
}
UNORDERED_AUTO_TEST (example3) {
typedef boost::unordered_set<int>::iterator iterator;
boost::unordered_set<int> src;
src.insert(1);
src.insert(3);
src.insert(5);
boost::unordered_set<int> dst;
dst.insert(2);
dst.insert(4);
dst.insert(5);
for (iterator i = src.begin(); i != src.end();) {
std::pair<iterator, iterator> p = dst.equal_range(*i);
if (p.first == p.second)
dst.insert(p.first, src.extract(i++));
else
++i;
}
BOOST_TEST(src.size() == 1);
BOOST_TEST(*src.begin() == 5);
std::set<int> dst2(dst.begin(), dst.end());
std::set<int>::iterator it = dst2.begin();
BOOST_TEST(*it++ == 1);
BOOST_TEST(*it++ == 2);
BOOST_TEST(*it++ == 3);
BOOST_TEST(*it++ == 4);
BOOST_TEST(*it++ == 5);
BOOST_TEST(it == dst2.end());
}
UNORDERED_AUTO_TEST (failed_insertion_with_hint) {
{
boost::unordered_set<int> src;
boost::unordered_set<int> dst;
src.emplace(10);
src.emplace(20);
dst.emplace(10);
dst.emplace(20);
boost::unordered_set<int>::node_type nh = src.extract(10);
BOOST_TEST(dst.insert(dst.find(10), boost::move(nh)) == dst.find(10));
BOOST_TEST(nh);
BOOST_TEST(!nh.empty());
BOOST_TEST(nh.value() == 10);
BOOST_TEST(dst.insert(dst.find(20), boost::move(nh)) == dst.find(10));
BOOST_TEST(nh);
BOOST_TEST(!nh.empty());
BOOST_TEST(nh.value() == 10);
BOOST_TEST(src.count(10) == 0);
BOOST_TEST(src.count(20) == 1);
BOOST_TEST(dst.count(10) == 1);
BOOST_TEST(dst.count(20) == 1);
}
{
boost::unordered_map<int, int> src;
boost::unordered_map<int, int> dst;
src.emplace(10, 30);
src.emplace(20, 5);
dst.emplace(10, 20);
dst.emplace(20, 2);
boost::unordered_map<int, int>::node_type nh = src.extract(10);
BOOST_TEST(dst.insert(dst.find(10), boost::move(nh)) == dst.find(10));
BOOST_TEST(nh);
BOOST_TEST(!nh.empty());
BOOST_TEST(nh.key() == 10);
BOOST_TEST(nh.mapped() == 30);
BOOST_TEST(dst[10] == 20);
BOOST_TEST(dst.insert(dst.find(20), boost::move(nh)) == dst.find(10));
BOOST_TEST(nh);
BOOST_TEST(!nh.empty());
BOOST_TEST(nh.key() == 10);
BOOST_TEST(nh.mapped() == 30);
BOOST_TEST(dst[10] == 20);
BOOST_TEST(src.count(10) == 0);
BOOST_TEST(src.count(20) == 1);
BOOST_TEST(dst.count(10) == 1);
BOOST_TEST(dst.count(20) == 1);
}
}
template <typename NodeHandle>
bool node_handle_compare(
NodeHandle const& nh, BOOST_DEDUCED_TYPENAME NodeHandle::value_type const& x)
{
return x == nh.value();
}
template <typename NodeHandle>
bool node_handle_compare(NodeHandle const& nh,
std::pair<BOOST_DEDUCED_TYPENAME NodeHandle::key_type const,
BOOST_DEDUCED_TYPENAME NodeHandle::mapped_type> const& x)
{
return x.first == nh.key() && x.second == nh.mapped();
}
template <typename Container> void node_handle_tests_impl(Container& c)
{
typedef BOOST_DEDUCED_TYPENAME Container::node_type node_type;
BOOST_DEDUCED_TYPENAME Container::value_type value = *c.begin();
node_type n1;
BOOST_TEST(!n1);
BOOST_TEST(n1.empty());
node_type n2 = c.extract(c.begin());
BOOST_TEST(n2);
BOOST_TEST(!n2.empty());
node_handle_compare(n2, value);
node_type n3 = boost::move(n2);
BOOST_TEST(n3);
BOOST_TEST(!n2);
node_handle_compare(n3, value);
// TODO: Check that n2 doesn't have an allocator?
// Maybe by swapping and observing that the allocator is
// swapped rather than moved?
n1 = boost::move(n3);
BOOST_TEST(n1);
BOOST_TEST(!n3);
node_handle_compare(n1, value);
// Self move-assignment empties the node_handle.
n1 = boost::move(n1);
BOOST_TEST(!n1);
n3 = boost::move(n3);
BOOST_TEST(!n3);
BOOST_DEDUCED_TYPENAME Container::value_type value1 = *c.begin();
n1 = c.extract(c.begin());
BOOST_DEDUCED_TYPENAME Container::value_type value2 = *c.begin();
n2 = c.extract(c.begin());
n3 = node_type();
node_handle_compare(n1, value1);
node_handle_compare(n2, value2);
n1.swap(n2);
BOOST_TEST(n1);
BOOST_TEST(n2);
node_handle_compare(n1, value2);
node_handle_compare(n2, value1);
BOOST_TEST(n1);
BOOST_TEST(!n3);
n1.swap(n3);
BOOST_TEST(!n1);
BOOST_TEST(n3);
node_handle_compare(n3, value2);
BOOST_TEST(!n1);
BOOST_TEST(n2);
n1.swap(n2);
BOOST_TEST(n1);
BOOST_TEST(!n2);
node_handle_compare(n1, value1);
node_type n4;
BOOST_TEST(!n2);
BOOST_TEST(!n4);
n2.swap(n4);
BOOST_TEST(!n2);
BOOST_TEST(!n4);
}
UNORDERED_AUTO_TEST (node_handle_tests) {
boost::unordered_set<int> x1;
x1.emplace(100);
x1.emplace(140);
x1.emplace(-55);
node_handle_tests_impl(x1);
boost::unordered_map<int, std::string> x2;
x2.emplace(10, "ten");
x2.emplace(-23, "twenty");
x2.emplace(-76, "thirty");
node_handle_tests_impl(x2);
}
template <typename Container1, typename Container2>
void insert_node_handle_unique(Container1& c1, Container2& c2)
{
typedef BOOST_DEDUCED_TYPENAME Container1::node_type node_type;
typedef BOOST_DEDUCED_TYPENAME Container1::value_type value_type;
BOOST_STATIC_ASSERT(boost::is_same<node_type,
BOOST_DEDUCED_TYPENAME Container2::node_type>::value);
typedef BOOST_DEDUCED_TYPENAME Container1::insert_return_type
insert_return_type1;
typedef BOOST_DEDUCED_TYPENAME Container2::insert_return_type
insert_return_type2;
insert_return_type1 r1 = c1.insert(node_type());
insert_return_type2 r2 = c2.insert(node_type());
BOOST_TEST(!r1.inserted);
BOOST_TEST(!r1.node);
BOOST_TEST(r1.position == c1.end());
BOOST_TEST(!r2.inserted);
BOOST_TEST(!r2.node);
BOOST_TEST(r2.position == c2.end());
while (!c1.empty()) {
value_type v = *c1.begin();
value_type const* v_ptr = boost::addressof(*c1.begin());
std::size_t count = c2.count(test::get_key<Container1>(v));
insert_return_type2 r = c2.insert(c1.extract(c1.begin()));
if (!count) {
BOOST_TEST(r.inserted);
BOOST_TEST_EQ(c2.count(test::get_key<Container1>(v)), count + 1);
BOOST_TEST(r.position != c2.end());
BOOST_TEST(boost::addressof(*r.position) == v_ptr);
BOOST_TEST(!r.node);
} else {
BOOST_TEST(!r.inserted);
BOOST_TEST_EQ(c2.count(test::get_key<Container1>(v)), count);
BOOST_TEST(r.position != c2.end());
BOOST_TEST(
test::get_key<Container2>(*r.position) == test::get_key<Container2>(v));
BOOST_TEST(r.node);
node_handle_compare(r.node, v);
}
}
}
template <typename Container1, typename Container2>
void insert_node_handle_unique2(Container1& c1, Container2& c2)
{
typedef BOOST_DEDUCED_TYPENAME Container1::node_type node_type;
typedef BOOST_DEDUCED_TYPENAME Container1::value_type value_type;
BOOST_STATIC_ASSERT(boost::is_same<node_type,
BOOST_DEDUCED_TYPENAME Container2::node_type>::value);
// typedef BOOST_DEDUCED_TYPENAME Container1::insert_return_type
// insert_return_type1;
typedef BOOST_DEDUCED_TYPENAME Container2::insert_return_type
insert_return_type2;
while (!c1.empty()) {
value_type v = *c1.begin();
value_type const* v_ptr = boost::addressof(*c1.begin());
std::size_t count = c2.count(test::get_key<Container1>(v));
insert_return_type2 r = c2.insert(c1.extract(test::get_key<Container1>(v)));
if (r.inserted) {
BOOST_TEST_EQ(c2.count(test::get_key<Container1>(v)), count + 1);
BOOST_TEST(r.position != c2.end());
BOOST_TEST(boost::addressof(*r.position) == v_ptr);
BOOST_TEST(!r.node);
} else {
BOOST_TEST_EQ(c2.count(test::get_key<Container1>(v)), count);
BOOST_TEST(r.position != c2.end());
BOOST_TEST(
test::get_key<Container2>(*r.position) == test::get_key<Container2>(v));
BOOST_TEST(r.node);
node_handle_compare(r.node, v);
}
}
}
template <typename Container1, typename Container2>
void insert_node_handle_equiv(Container1& c1, Container2& c2)
{
typedef BOOST_DEDUCED_TYPENAME Container1::node_type node_type;
typedef BOOST_DEDUCED_TYPENAME Container1::value_type value_type;
BOOST_STATIC_ASSERT(boost::is_same<node_type,
BOOST_DEDUCED_TYPENAME Container2::node_type>::value);
typedef BOOST_DEDUCED_TYPENAME Container1::iterator iterator1;
typedef BOOST_DEDUCED_TYPENAME Container2::iterator iterator2;
iterator1 r1 = c1.insert(node_type());
iterator2 r2 = c2.insert(node_type());
BOOST_TEST(r1 == c1.end());
BOOST_TEST(r2 == c2.end());
while (!c1.empty()) {
value_type v = *c1.begin();
value_type const* v_ptr = boost::addressof(*c1.begin());
std::size_t count = c2.count(test::get_key<Container1>(v));
iterator2 r = c2.insert(c1.extract(c1.begin()));
BOOST_TEST_EQ(c2.count(test::get_key<Container1>(v)), count + 1);
BOOST_TEST(r != c2.end());
BOOST_TEST(boost::addressof(*r) == v_ptr);
}
}
struct hash_thing
{
std::size_t operator()(int x) const
{
return static_cast<std::size_t>(x * 13 + 5);
}
};
UNORDERED_AUTO_TEST (insert_node_handle_unique_tests) {
{
boost::unordered_set<int> x1;
boost::unordered_set<int> x2;
x1.emplace(100);
x1.emplace(140);
x1.emplace(-55);
x2.emplace(140);
insert_node_handle_unique(x1, x2);
BOOST_TEST(x2.size() == 3);
}
{
boost::unordered_map<int, int, hash_thing> x1;
boost::unordered_map<int, int> x2;
x1.emplace(67, 50);
x1.emplace(23, 45);
x1.emplace(18, 19);
x2.emplace(23, 50);
x2.emplace(12, 49);
insert_node_handle_unique(x1, x2);
BOOST_TEST(x2.size() == 4);
}
}
UNORDERED_AUTO_TEST (insert_node_handle_equiv_tests) {
{
boost::unordered_multimap<int, int, hash_thing> x1;
boost::unordered_multimap<int, int> x2;
x1.emplace(67, 50);
x1.emplace(67, 100);
x1.emplace(23, 45);
x1.emplace(18, 19);
x2.emplace(23, 50);
x2.emplace(12, 49);
insert_node_handle_equiv(x1, x2);
BOOST_TEST(x2.size() == 6);
}
}
UNORDERED_AUTO_TEST (insert_node_handle_unique_tests2) {
{
boost::unordered_set<int> x1;
boost::unordered_set<int> x2;
x1.emplace(100);
x1.emplace(140);
x1.emplace(-55);
x2.emplace(140);
insert_node_handle_unique2(x1, x2);
BOOST_TEST(x2.size() == 3);
}
{
boost::unordered_map<int, int, hash_thing> x1;
boost::unordered_map<int, int> x2;
x1.emplace(67, 50);
x1.emplace(23, 45);
x1.emplace(18, 19);
x2.emplace(23, 50);
x2.emplace(12, 49);
insert_node_handle_unique2(x1, x2);
BOOST_TEST(x2.size() == 4);
}
}
RUN_TESTS()

View File

@@ -0,0 +1,168 @@
// Copyright 2013 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include "../helpers/test.hpp"
namespace noexcept_tests {
// Test the noexcept is set correctly for the move constructor.
struct hash_possible_exception : boost::hash<int>
{
hash_possible_exception(hash_possible_exception const&) {}
};
struct equal_to_possible_exception : std::equal_to<int>
{
equal_to_possible_exception(equal_to_possible_exception const&) {}
};
// Test that the move constructor does actually move without throwing
// an exception when it claims to.
struct test_exception
{
};
bool throwing_test_exception = false;
void test_throw(char const* name)
{
if (throwing_test_exception) {
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Throw exception in: " << name
<< std::endl;
throw test_exception();
}
}
class hash_nothrow_move : boost::hash<int>
{
BOOST_COPYABLE_AND_MOVABLE(hash_nothrow_move)
typedef boost::hash<int> base;
public:
hash_nothrow_move(BOOST_RV_REF(hash_nothrow_move)) BOOST_NOEXCEPT {}
hash_nothrow_move() { test_throw("Constructor"); }
hash_nothrow_move(hash_nothrow_move const&) { test_throw("Copy"); }
hash_nothrow_move& operator=(BOOST_COPY_ASSIGN_REF(hash_nothrow_move))
{
test_throw("Assign");
return *this;
}
hash_nothrow_move& operator=(BOOST_RV_REF(hash_nothrow_move))
{
test_throw("Move Assign");
return *this;
}
std::size_t operator()(int x) const
{
test_throw("Operator");
return static_cast<base const&>(*this)(x);
}
};
class equal_to_nothrow_move : std::equal_to<int>
{
BOOST_COPYABLE_AND_MOVABLE(equal_to_nothrow_move)
typedef std::equal_to<int> base;
public:
equal_to_nothrow_move(BOOST_RV_REF(equal_to_nothrow_move)) BOOST_NOEXCEPT {}
equal_to_nothrow_move() { test_throw("Constructor"); }
equal_to_nothrow_move(equal_to_nothrow_move const&) { test_throw("Copy"); }
equal_to_nothrow_move& operator=(
BOOST_COPY_ASSIGN_REF(equal_to_nothrow_move))
{
test_throw("Assign");
return *this;
}
equal_to_nothrow_move& operator=(BOOST_RV_REF(equal_to_nothrow_move))
{
test_throw("Move Assign");
return *this;
}
std::size_t operator()(int x, int y) const
{
test_throw("Operator");
return static_cast<base const&>(*this)(x, y);
}
};
bool have_is_nothrow_move = false;
UNORDERED_AUTO_TEST (check_is_nothrow_move) {
BOOST_TEST(
!boost::is_nothrow_move_constructible<hash_possible_exception>::value);
have_is_nothrow_move =
boost::is_nothrow_move_constructible<hash_nothrow_move>::value;
// Copied from boost::is_nothrow_move_constructible implementation
// to make sure this does actually detect it when expected.
//
// The type trait is also available when BOOST_IS_NOTHROW_MOVE_CONSTRUCT
// is defined (for some versions of Visual C++?) but detects 'throw()',
// not noexcept.
#if !defined(BOOST_NO_CXX11_NOEXCEPT) && !defined(BOOST_NO_SFINAE_EXPR) && \
!BOOST_WORKAROUND(BOOST_GCC_VERSION, < 40800)
BOOST_TEST(have_is_nothrow_move);
#endif
}
UNORDERED_AUTO_TEST (test_noexcept) {
if (have_is_nothrow_move) {
BOOST_TEST((boost::is_nothrow_move_constructible<
boost::unordered_set<int> >::value));
BOOST_TEST((boost::is_nothrow_move_constructible<
boost::unordered_multiset<int> >::value));
BOOST_TEST((boost::is_nothrow_move_constructible<
boost::unordered_map<int, int> >::value));
BOOST_TEST((boost::is_nothrow_move_constructible<
boost::unordered_multimap<int, int> >::value));
}
BOOST_TEST((!boost::is_nothrow_move_constructible<
boost::unordered_set<int, hash_possible_exception> >::value));
BOOST_TEST(
(!boost::is_nothrow_move_constructible<boost::unordered_multiset<int,
boost::hash<int>, equal_to_possible_exception> >::value));
}
UNORDERED_AUTO_TEST (test_no_throw_when_noexcept) {
typedef boost::unordered_set<int, hash_nothrow_move, equal_to_nothrow_move>
throwing_set;
if (have_is_nothrow_move) {
BOOST_TEST(boost::is_nothrow_move_constructible<throwing_set>::value);
throwing_test_exception = false;
throwing_set x1;
x1.insert(10);
x1.insert(50);
try {
throwing_test_exception = true;
throwing_set x2 = boost::move(x1);
BOOST_TEST(x2.size() == 2);
BOOST_TEST(*x2.begin() == 10 || *x2.begin() == 50);
} catch (test_exception) {
BOOST_TEST(false);
}
throwing_test_exception = false;
}
}
}
RUN_TESTS()

View File

@@ -0,0 +1,230 @@
// Copyright 2006-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include "../helpers/test.hpp"
#include "../helpers/random_values.hpp"
#include "../helpers/tracker.hpp"
#include "../helpers/metafunctions.hpp"
#include "../objects/test.hpp"
namespace rehash_tests {
test::seed_t initialize_seed(2974);
template <class X>
bool postcondition(X const& x, BOOST_DEDUCED_TYPENAME X::size_type n)
{
return static_cast<double>(x.bucket_count()) >=
static_cast<double>(x.size()) / x.max_load_factor() &&
x.bucket_count() >= n;
}
template <class X> void rehash_empty_test1(X*)
{
X x;
x.rehash(10000);
BOOST_TEST(postcondition(x, 10000));
x.rehash(0);
BOOST_TEST(postcondition(x, 0));
x.rehash(10000000);
BOOST_TEST(postcondition(x, 10000000));
}
template <class X>
void rehash_empty_test2(X*, test::random_generator generator)
{
test::random_values<X> v(1000, generator);
test::ordered<X> tracker;
X x;
x.rehash(10000);
BOOST_TEST(postcondition(x, 10000));
tracker.insert_range(v.begin(), v.end());
x.insert(v.begin(), v.end());
tracker.compare(x);
BOOST_TEST(postcondition(x, 10000));
x.rehash(10000000);
tracker.compare(x);
BOOST_TEST(postcondition(x, 10000000));
}
template <class X>
void rehash_empty_test3(X*, test::random_generator generator)
{
test::random_values<X> v(1000, generator);
test::ordered<X> tracker;
X x;
x.rehash(0);
BOOST_TEST(postcondition(x, 0));
tracker.insert_range(v.begin(), v.end());
x.insert(v.begin(), v.end());
tracker.compare(x);
BOOST_TEST(postcondition(x, 0));
}
template <class X> void rehash_test1(X*, test::random_generator generator)
{
test::random_values<X> v(1000, generator);
test::ordered<X> tracker;
tracker.insert_range(v.begin(), v.end());
X x(v.begin(), v.end());
x.rehash(0);
BOOST_TEST(postcondition(x, 0));
tracker.compare(x);
x.max_load_factor(0.25);
x.rehash(0);
BOOST_TEST(postcondition(x, 0));
tracker.compare(x);
x.max_load_factor(50.0);
x.rehash(0);
BOOST_TEST(postcondition(x, 0));
tracker.compare(x);
x.rehash(1000);
BOOST_TEST(postcondition(x, 1000));
tracker.compare(x);
}
template <class X> void reserve_empty_test1(X*)
{
X x;
x.reserve(10000);
BOOST_TEST(x.bucket_count() >= 10000);
x.reserve(0);
x.reserve(10000000);
BOOST_TEST(x.bucket_count() >= 10000000);
}
template <class X> void reserve_empty_test2(X*)
{
X x;
x.max_load_factor(0.25);
x.reserve(10000);
BOOST_TEST(x.bucket_count() >= 40000);
x.reserve(0);
x.reserve(10000000);
BOOST_TEST(x.bucket_count() >= 40000000);
}
template <class X> void reserve_test1(X*, test::random_generator generator)
{
for (int random_mlf = 0; random_mlf < 2; ++random_mlf) {
for (std::size_t i = 1; i < 2000; i += i < 50 ? 1 : 13) {
test::random_values<X> v(i, generator);
test::ordered<X> tracker;
tracker.insert_range(v.begin(), v.end());
X x;
x.max_load_factor(
random_mlf ? static_cast<float>(std::rand() % 1000) / 500.0f + 0.5f
: 1.0f);
x.reserve(test::has_unique_keys<X>::value ? i : v.size());
// Insert an element before the range insert, otherwise there are
// no iterators to invalidate in the range insert, and it can
// rehash.
typename test::random_values<X>::iterator it = v.begin();
x.insert(*it);
++it;
std::size_t bucket_count = x.bucket_count();
x.insert(it, v.end());
BOOST_TEST(bucket_count == x.bucket_count());
tracker.compare(x);
}
}
}
template <class X> void reserve_test2(X*, test::random_generator generator)
{
for (int random_mlf = 0; random_mlf < 2; ++random_mlf) {
for (std::size_t i = 0; i < 2000; i += i < 50 ? 1 : 13) {
test::random_values<X> v(i, generator);
test::ordered<X> tracker;
tracker.insert_range(v.begin(), v.end());
X x;
x.max_load_factor(
random_mlf ? static_cast<float>(std::rand() % 1000) / 500.0f + 0.5f
: 1.0f);
x.reserve(test::has_unique_keys<X>::value ? i : v.size());
std::size_t bucket_count = x.bucket_count();
for (typename test::random_values<X>::iterator it = v.begin();
it != v.end(); ++it) {
x.insert(*it);
}
BOOST_TEST(bucket_count == x.bucket_count());
tracker.compare(x);
}
}
}
boost::unordered_set<int>* int_set_ptr;
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_multiset_ptr;
boost::unordered_map<test::movable, test::movable, test::hash, test::equal_to,
test::allocator2<test::movable> >* test_map_ptr;
boost::unordered_multimap<int, int>* int_multimap_ptr;
using test::default_generator;
using test::generate_collisions;
using test::limited_range;
UNORDERED_TEST(rehash_empty_test1,
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr)))
UNORDERED_TEST(rehash_empty_test2,
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(rehash_empty_test3,
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(rehash_test1,
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(reserve_empty_test1,
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr)))
UNORDERED_TEST(reserve_empty_test2,
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr)))
UNORDERED_TEST(reserve_test1,
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(reserve_test2,
((int_set_ptr)(test_multiset_ptr)(test_map_ptr)(int_multimap_ptr))(
(default_generator)(generate_collisions)(limited_range)))
}
RUN_TESTS()

View File

@@ -0,0 +1,134 @@
// Copyright 2006-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// This test checks the runtime requirements of containers.
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include "../helpers/test.hpp"
#include <cstdlib>
#include <algorithm>
#include "../helpers/equivalent.hpp"
template <class X> void simple_test(X const& a)
{
test::unordered_equivalence_tester<X> equivalent(a);
{
X u;
BOOST_TEST(u.size() == 0);
BOOST_TEST(X().size() == 0);
}
{
BOOST_TEST(equivalent(X(a)));
}
{
X u(a);
BOOST_TEST(equivalent(u));
}
{
X u = a;
BOOST_TEST(equivalent(u));
}
{
X b(a);
BOOST_TEST(b.begin() == const_cast<X const&>(b).cbegin());
BOOST_TEST(b.end() == const_cast<X const&>(b).cend());
}
{
X b(a);
X c;
BOOST_TEST(equivalent(b));
BOOST_TEST(c.empty());
b.swap(c);
BOOST_TEST(b.empty());
BOOST_TEST(equivalent(c));
b.swap(c);
BOOST_TEST(c.empty());
BOOST_TEST(equivalent(b));
}
{
X u;
X& r = u;
BOOST_TEST(&(r = r) == &r);
BOOST_TEST(r.empty());
BOOST_TEST(&(r = a) == &r);
BOOST_TEST(equivalent(r));
BOOST_TEST(&(r = r) == &r);
BOOST_TEST(equivalent(r));
}
{
BOOST_TEST(a.size() == static_cast<BOOST_DEDUCED_TYPENAME X::size_type>(
std::distance(a.begin(), a.end())));
}
{
BOOST_TEST(a.empty() == (a.size() == 0));
}
{
BOOST_TEST(a.empty() == (a.begin() == a.end()));
X u;
BOOST_TEST(u.begin() == u.end());
}
}
UNORDERED_AUTO_TEST (simple_tests) {
using namespace std;
srand(14878);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Test unordered_set.\n";
boost::unordered_set<int> set;
simple_test(set);
set.insert(1);
set.insert(2);
set.insert(1456);
simple_test(set);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Test unordered_multiset.\n";
boost::unordered_multiset<int> multiset;
simple_test(multiset);
for (int i1 = 0; i1 < 1000; ++i1) {
int count = rand() % 10, index = rand();
for (int j = 0; j < count; ++j)
multiset.insert(index);
}
simple_test(multiset);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Test unordered_map.\n";
boost::unordered_map<int, int> map;
for (int i2 = 0; i2 < 1000; ++i2) {
map.insert(std::pair<const int, int>(rand(), rand()));
}
simple_test(map);
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "Test unordered_multimap.\n";
boost::unordered_multimap<int, int> multimap;
for (int i3 = 0; i3 < 1000; ++i3) {
int count = rand() % 10, index = rand();
for (int j = 0; j < count; ++j)
multimap.insert(std::pair<const int, int>(index, rand()));
}
simple_test(multimap);
}
RUN_TESTS()

View File

@@ -0,0 +1,211 @@
// Copyright 2006-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include <boost/config.hpp>
#include <algorithm>
#include <iterator>
#include "../helpers/test.hpp"
#include "../objects/test.hpp"
#include "../objects/cxx11_allocator.hpp"
#include "../helpers/random_values.hpp"
#include "../helpers/tracker.hpp"
#include "../helpers/invariants.hpp"
#if defined(BOOST_MSVC)
#pragma warning(disable : 4127) // conditional expression is constant
#endif
namespace swap_tests {
test::seed_t initialize_seed(783472);
template <class X> void swap_test_impl(X& x1, X& x2)
{
test::ordered<X> tracker1 = test::create_ordered(x1);
test::ordered<X> tracker2 = test::create_ordered(x2);
tracker1.insert_range(x1.begin(), x1.end());
tracker2.insert_range(x2.begin(), x2.end());
x1.swap(x2);
tracker1.compare(x2);
tracker2.compare(x1);
}
template <class X> void swap_tests1(X*, test::random_generator generator)
{
{
test::check_instances check_;
X x;
swap_test_impl(x, x);
}
{
test::check_instances check_;
X x, y;
swap_test_impl(x, y);
}
{
test::check_instances check_;
test::random_values<X> v(1000, generator);
X x, y(v.begin(), v.end());
swap_test_impl(x, y);
swap_test_impl(x, y);
}
{
test::check_instances check_;
test::random_values<X> vx(1000, generator), vy(1000, generator);
X x(vx.begin(), vx.end()), y(vy.begin(), vy.end());
swap_test_impl(x, y);
swap_test_impl(x, y);
}
}
template <class X> void swap_tests2(X* ptr, test::random_generator generator)
{
swap_tests1(ptr, generator);
typedef BOOST_DEDUCED_TYPENAME X::hasher hasher;
typedef BOOST_DEDUCED_TYPENAME X::key_equal key_equal;
typedef BOOST_DEDUCED_TYPENAME X::allocator_type allocator_type;
{
test::check_instances check_;
X x(0, hasher(1), key_equal(1));
X y(0, hasher(2), key_equal(2));
swap_test_impl(x, y);
}
{
test::check_instances check_;
test::random_values<X> v(1000, generator);
X x(v.begin(), v.end(), 0, hasher(1), key_equal(1));
X y(0, hasher(2), key_equal(2));
swap_test_impl(x, y);
}
{
test::check_instances check_;
test::random_values<X> vx(100, generator), vy(50, generator);
X x(vx.begin(), vx.end(), 0, hasher(1), key_equal(1));
X y(vy.begin(), vy.end(), 0, hasher(2), key_equal(2));
swap_test_impl(x, y);
swap_test_impl(x, y);
}
{
test::force_equal_allocator force_(!allocator_type::is_propagate_on_swap);
test::check_instances check_;
test::random_values<X> vx(50, generator), vy(100, generator);
X x(vx.begin(), vx.end(), 0, hasher(), key_equal(), allocator_type(1));
X y(vy.begin(), vy.end(), 0, hasher(), key_equal(), allocator_type(2));
if (allocator_type::is_propagate_on_swap ||
x.get_allocator() == y.get_allocator()) {
swap_test_impl(x, y);
}
}
{
test::force_equal_allocator force_(!allocator_type::is_propagate_on_swap);
test::check_instances check_;
test::random_values<X> vx(100, generator), vy(100, generator);
X x(vx.begin(), vx.end(), 0, hasher(1), key_equal(1), allocator_type(1));
X y(vy.begin(), vy.end(), 0, hasher(2), key_equal(2), allocator_type(2));
if (allocator_type::is_propagate_on_swap ||
x.get_allocator() == y.get_allocator()) {
swap_test_impl(x, y);
swap_test_impl(x, y);
}
}
}
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
std::allocator<test::object> >* test_map_std_alloc;
boost::unordered_set<test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_set;
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::allocator2<test::object> >* test_multiset;
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::allocator1<test::object> >* test_map;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::allocator2<test::object> >* test_multimap;
boost::unordered_set<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_swap> >*
test_set_prop_swap;
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_swap> >*
test_multiset_prop_swap;
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::propagate_swap> >*
test_map_prop_swap;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to, test::cxx11_allocator<test::object, test::propagate_swap> >*
test_multimap_prop_swap;
boost::unordered_set<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_swap> >*
test_set_no_prop_swap;
boost::unordered_multiset<test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_swap> >*
test_multiset_no_prop_swap;
boost::unordered_map<test::object, test::object, test::hash, test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_swap> >*
test_map_no_prop_swap;
boost::unordered_multimap<test::object, test::object, test::hash,
test::equal_to,
test::cxx11_allocator<test::object, test::no_propagate_swap> >*
test_multimap_no_prop_swap;
template <typename T> bool is_propagate(T*)
{
return T::allocator_type::is_propagate_on_swap;
}
using test::default_generator;
using test::generate_collisions;
using test::limited_range;
UNORDERED_AUTO_TEST (check_traits) {
BOOST_TEST(!is_propagate(test_set));
BOOST_TEST(is_propagate(test_set_prop_swap));
BOOST_TEST(!is_propagate(test_set_no_prop_swap));
}
UNORDERED_TEST(
swap_tests1, ((test_map_std_alloc)(test_set)(test_multiset)(test_map)(
test_multimap)(test_set_prop_swap)(test_multiset_prop_swap)(
test_map_prop_swap)(test_multimap_prop_swap)(
test_set_no_prop_swap)(test_multiset_no_prop_swap)(
test_map_no_prop_swap)(test_multimap_no_prop_swap))(
(default_generator)(generate_collisions)(limited_range)))
UNORDERED_TEST(swap_tests2,
((test_set)(test_multiset)(test_map)(test_multimap)(test_set_prop_swap)(
test_multiset_prop_swap)(test_map_prop_swap)(test_multimap_prop_swap)(
test_set_no_prop_swap)(test_multiset_no_prop_swap)(test_map_no_prop_swap)(
test_multimap_no_prop_swap))(
(default_generator)(generate_collisions)(limited_range)))
}
RUN_TESTS()

View File

@@ -0,0 +1,582 @@
// Copyright 2006-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include "../helpers/test.hpp"
namespace unnecessary_copy_tests {
struct count_copies
{
private:
BOOST_COPYABLE_AND_MOVABLE(count_copies)
public:
static int copies;
static int moves;
static int id_count;
count_copies() : tag_(0), id_(++id_count)
{
++copies;
trace_op("Default construct");
}
explicit count_copies(int tag) : tag_(tag), id_(++id_count)
{
++copies;
trace_op("Tag construct");
}
// This bizarre constructor is an attempt to confuse emplace.
//
// unordered_map<count_copies, count_copies> x:
// x.emplace(count_copies(1), count_copies(2));
// x.emplace(count_copies(1), count_copies(2), count_copies(3));
//
// The first emplace should use the single argument constructor twice.
// The second emplace should use the single argument contructor for
// the key, and this constructor for the value.
count_copies(count_copies const&, count_copies const& x)
: tag_(x.tag_), id_(++id_count)
{
++copies;
trace_op("Pair construct");
}
count_copies(count_copies const& x) : tag_(x.tag_), id_(++id_count)
{
++copies;
trace_op("Copy construct");
}
count_copies(BOOST_RV_REF(count_copies) x) : tag_(x.tag_), id_(++id_count)
{
x.tag_ = -1;
++moves;
trace_op("Move construct");
}
count_copies& operator=(
BOOST_COPY_ASSIGN_REF(count_copies) p) // Copy assignment
{
tag_ = p.tag_;
++copies;
trace_op("Copy assign");
return *this;
}
count_copies& operator=(BOOST_RV_REF(count_copies) p) // Move assignment
{
tag_ = p.tag_;
++moves;
trace_op("Move assign");
return *this;
}
~count_copies() { trace_op("Destruct"); }
void trace_op(char const* str)
{
BOOST_LIGHTWEIGHT_TEST_OSTREAM << str << ": " << tag_ << " (#" << id_
<< ")" << std::endl;
}
int tag_;
int id_;
};
bool operator==(count_copies const& x, count_copies const& y)
{
return x.tag_ == y.tag_;
}
template <class T> T source() { return T(); }
void reset()
{
count_copies::copies = 0;
count_copies::moves = 0;
BOOST_LIGHTWEIGHT_TEST_OSTREAM << "\nReset\n" << std::endl;
}
}
#if defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP)
namespace boost
#else
namespace unnecessary_copy_tests
#endif
{
std::size_t hash_value(unnecessary_copy_tests::count_copies const& x)
{
return static_cast<std::size_t>(x.tag_);
}
}
// Boost.Move doesn't seem to work very well on this compiler.
// For example for:
//
// T x;
//
// It will default construct T, and then move it in.
// For 'T const' it seems to copy.
#if defined(__IBMCPP__) && __IBMCPP__ <= 1210
#define EXTRA_CONSTRUCT_COST 1
#else
#define EXTRA_CONSTRUCT_COST 0
#endif
#define COPY_COUNT(n) \
if (::unnecessary_copy_tests::count_copies::copies != n) { \
BOOST_ERROR("Wrong number of copies."); \
BOOST_LIGHTWEIGHT_TEST_OSTREAM \
<< "Number of copies: " \
<< ::unnecessary_copy_tests::count_copies::copies << " expecting: " << n \
<< std::endl; \
}
#define MOVE_COUNT(n) \
if (::unnecessary_copy_tests::count_copies::moves != n) { \
BOOST_ERROR("Wrong number of moves."); \
BOOST_LIGHTWEIGHT_TEST_OSTREAM \
<< "Number of moves: " << ::unnecessary_copy_tests::count_copies::moves \
<< " expecting: " << n << std::endl; \
}
#define COPY_COUNT_RANGE(a, b) \
if (::unnecessary_copy_tests::count_copies::copies < a || \
::unnecessary_copy_tests::count_copies::copies > b) { \
BOOST_ERROR("Wrong number of copies."); \
BOOST_LIGHTWEIGHT_TEST_OSTREAM \
<< "Number of copies: " \
<< ::unnecessary_copy_tests::count_copies::copies << " expecting: [" \
<< a << ", " << b << "]" << std::endl; \
}
#define MOVE_COUNT_RANGE(a, b) \
if (::unnecessary_copy_tests::count_copies::moves < a || \
::unnecessary_copy_tests::count_copies::moves > b) { \
BOOST_ERROR("Wrong number of moves."); \
BOOST_LIGHTWEIGHT_TEST_OSTREAM \
<< "Number of moves: " << ::unnecessary_copy_tests::count_copies::moves \
<< " expecting: [" << a << ", " << b << "]" << std::endl; \
}
#define COPY_COUNT_EXTRA(a, b) COPY_COUNT_RANGE(a, a + b * EXTRA_CONSTRUCT_COST)
#define MOVE_COUNT_EXTRA(a, b) MOVE_COUNT_RANGE(a, a + b * EXTRA_CONSTRUCT_COST)
namespace unnecessary_copy_tests {
int count_copies::copies;
int count_copies::moves;
int count_copies::id_count;
template <class T> void unnecessary_copy_insert_test(T*)
{
T x;
BOOST_DEDUCED_TYPENAME T::value_type a;
reset();
x.insert(a);
COPY_COUNT(1);
MOVE_COUNT(0);
}
template <class T> void unnecessary_copy_insert_rvalue_set_test(T*)
{
T x;
BOOST_DEDUCED_TYPENAME T::value_type a;
reset();
x.insert(boost::move(a));
COPY_COUNT(0);
MOVE_COUNT(1);
BOOST_DEDUCED_TYPENAME T::value_type a2;
reset();
x.insert(boost::move(a));
COPY_COUNT(0);
MOVE_COUNT((x.size() == 2 ? 1 : 0));
}
template <class T> void unnecessary_copy_insert_rvalue_map_test(T*)
{
// Doesn't currently try to emulate std::pair move construction,
// so std::pair's require a copy. Could try emulating it in
// construct_from_args.
T x;
BOOST_DEDUCED_TYPENAME T::value_type a;
reset();
x.insert(boost::move(a));
#if defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
COPY_COUNT(1);
MOVE_COUNT(0);
#else
COPY_COUNT(0);
MOVE_COUNT(1);
#endif
BOOST_DEDUCED_TYPENAME T::value_type a2;
reset();
x.insert(boost::move(a));
#if defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
COPY_COUNT((x.size() == 2 ? 1 : 0));
MOVE_COUNT(0);
#else
COPY_COUNT(0);
MOVE_COUNT((x.size() == 2 ? 1 : 0));
#endif
}
boost::unordered_set<count_copies>* set;
boost::unordered_multiset<count_copies>* multiset;
boost::unordered_map<int, count_copies>* map;
boost::unordered_multimap<int, count_copies>* multimap;
UNORDERED_TEST(unnecessary_copy_insert_test, ((set)(multiset)(map)(multimap)))
UNORDERED_TEST(unnecessary_copy_insert_rvalue_set_test, ((set)(multiset)))
UNORDERED_TEST(unnecessary_copy_insert_rvalue_map_test, ((map)(multimap)))
template <class T> void unnecessary_copy_emplace_test(T*)
{
reset();
T x;
BOOST_DEDUCED_TYPENAME T::value_type a;
COPY_COUNT(1);
x.emplace(a);
COPY_COUNT(2);
}
template <class T> void unnecessary_copy_emplace_rvalue_test(T*)
{
reset();
T x;
x.emplace(source<BOOST_DEDUCED_TYPENAME T::value_type>());
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
COPY_COUNT(1);
#else
COPY_COUNT(2);
#endif
}
UNORDERED_TEST(
unnecessary_copy_emplace_test, ((set)(multiset)(map)(multimap)))
UNORDERED_TEST(
unnecessary_copy_emplace_rvalue_test, ((set)(multiset)(map)(multimap)))
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
template <class T> void unnecessary_copy_emplace_std_move_test(T*)
{
reset();
T x;
BOOST_DEDUCED_TYPENAME T::value_type a;
COPY_COUNT(1);
MOVE_COUNT(0);
x.emplace(std::move(a));
COPY_COUNT(1);
MOVE_COUNT(1);
}
UNORDERED_TEST(
unnecessary_copy_emplace_std_move_test, ((set)(multiset)(map)(multimap)))
#endif
template <class T> void unnecessary_copy_emplace_boost_move_test(T*)
{
reset();
T x;
BOOST_DEDUCED_TYPENAME T::value_type a;
COPY_COUNT(1);
MOVE_COUNT_EXTRA(0, 1);
x.emplace(boost::move(a));
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
COPY_COUNT(1);
MOVE_COUNT(1);
#else
// Since std::pair isn't movable, move only works for sets.
COPY_COUNT_RANGE(1, 2);
MOVE_COUNT_RANGE(0, 1);
#endif
}
UNORDERED_TEST(
unnecessary_copy_emplace_boost_move_test, ((set)(multiset)(map)(multimap)))
template <class T> void unnecessary_copy_emplace_boost_move_set_test(T*)
{
reset();
T x;
BOOST_DEDUCED_TYPENAME T::value_type a;
COPY_COUNT(1);
MOVE_COUNT(0);
x.emplace(boost::move(a));
COPY_COUNT(1);
MOVE_COUNT(1);
}
UNORDERED_TEST(
unnecessary_copy_emplace_boost_move_set_test, ((set)(multiset)))
template <class T> void unnecessary_copy_emplace_boost_move_map_test(T*)
{
reset();
T x;
COPY_COUNT(0);
MOVE_COUNT(0);
BOOST_DEDUCED_TYPENAME T::value_type a;
COPY_COUNT(1);
MOVE_COUNT_EXTRA(0, 1);
x.emplace(boost::move(a));
#if defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
COPY_COUNT(2);
MOVE_COUNT_EXTRA(0, 1);
#else
COPY_COUNT(1);
MOVE_COUNT(1);
#endif
}
UNORDERED_TEST(
unnecessary_copy_emplace_boost_move_map_test, ((map)(multimap)))
UNORDERED_AUTO_TEST (unnecessary_copy_emplace_set_test) {
// When calling 'source' the object is moved on some compilers, but not
// others. So count that here to adjust later.
reset();
source<count_copies>();
int source_cost = ::unnecessary_copy_tests::count_copies::moves;
//
reset();
boost::unordered_set<count_copies> x;
count_copies a;
x.insert(a);
COPY_COUNT(2);
MOVE_COUNT(0);
//
// 0 arguments
//
#if !BOOST_UNORDERED_SUN_WORKAROUNDS1
// The container will have to create a copy in order to compare with
// the existing element.
reset();
x.emplace();
// source_cost doesn't make much sense here, but it seems to fit.
COPY_COUNT(1);
MOVE_COUNT(source_cost);
#endif
//
// 1 argument
//
// Emplace should be able to tell that there already is an element
// without creating a new one.
reset();
x.emplace(a);
COPY_COUNT(0);
MOVE_COUNT(0);
// A new object is created by source, but it shouldn't be moved or
// copied.
reset();
x.emplace(source<count_copies>());
COPY_COUNT(1);
MOVE_COUNT(source_cost);
// No move should take place.
reset();
x.emplace(boost::move(a));
COPY_COUNT(0);
MOVE_COUNT(0);
// Use a new value for cases where a did get moved...
count_copies b;
// The container will have to create a copy in order to compare with
// the existing element.
reset();
x.emplace(b.tag_);
COPY_COUNT(1);
MOVE_COUNT(0);
//
// 2 arguments
//
// The container will have to create b copy in order to compare with
// the existing element.
//
// Note to self: If copy_count == 0 it's an error not an optimization.
// TODO: Devise a better test.
reset();
x.emplace(b, b);
COPY_COUNT(1);
MOVE_COUNT(0);
}
UNORDERED_AUTO_TEST (unnecessary_copy_emplace_map_test) {
// When calling 'source' the object is moved on some compilers, but not
// others. So count that here to adjust later.
reset();
source<count_copies>();
int source_cost = ::unnecessary_copy_tests::count_copies::moves;
reset();
source<std::pair<count_copies, count_copies> >();
int source_pair_cost = ::unnecessary_copy_tests::count_copies::moves;
//
reset();
boost::unordered_map<count_copies, count_copies> x;
// TODO: Run tests for pairs without const etc.
std::pair<count_copies const, count_copies> a;
x.emplace(a);
COPY_COUNT_EXTRA(4, 1);
MOVE_COUNT_EXTRA(0, 1);
//
// 0 arguments
//
#if !BOOST_UNORDERED_SUN_WORKAROUNDS1
// COPY_COUNT(1) would be okay here.
reset();
x.emplace();
#if BOOST_WORKAROUND(BOOST_MSVC, == 1700)
// This is a little odd, Visual C++ 11 seems to move the pair, which
// results in one copy (for the const key) and one move (for the
// non-const mapped value). Since 'emplace(boost::move(a))' (see below)
// has the normal result, it must be some odd consequence of how
// Visual C++ 11 handles calling move for default arguments.
COPY_COUNT(3);
MOVE_COUNT(1);
#else
COPY_COUNT_EXTRA(2, 1);
MOVE_COUNT_EXTRA(0, 1);
#endif
#endif
reset();
x.emplace(boost::unordered::piecewise_construct, boost::make_tuple(),
boost::make_tuple());
COPY_COUNT(2);
MOVE_COUNT(0);
//
// 1 argument
//
reset();
x.emplace(a);
COPY_COUNT(0);
MOVE_COUNT(0);
// A new object is created by source, but it shouldn't be moved or
// copied.
reset();
x.emplace(source<std::pair<count_copies, count_copies> >());
COPY_COUNT(2);
MOVE_COUNT(source_pair_cost);
#if !(defined(__GNUC__) && __cplusplus < 199900L) && \
!(defined(_MSC_VER) && _MSC_VER < 1600)
count_copies part;
reset();
std::pair<count_copies const&, count_copies const&> a_ref(part, part);
x.emplace(a_ref);
COPY_COUNT(2);
MOVE_COUNT(0);
#endif
// No move should take place.
// (since a is already in the container)
reset();
x.emplace(boost::move(a));
COPY_COUNT(0);
MOVE_COUNT(0);
//
// 2 arguments
//
std::pair<count_copies const, count_copies> b;
reset();
x.emplace(b.first, b.second);
COPY_COUNT(0);
MOVE_COUNT(0);
reset();
x.emplace(source<count_copies>(), source<count_copies>());
COPY_COUNT(2);
MOVE_COUNT(source_cost * 2);
// source<count_copies> creates a single copy.
reset();
x.emplace(b.first, source<count_copies>());
COPY_COUNT(1);
MOVE_COUNT(source_cost);
reset();
x.emplace(count_copies(b.first.tag_), count_copies(b.second.tag_));
COPY_COUNT(2);
MOVE_COUNT(0);
reset();
x.emplace(boost::unordered::piecewise_construct,
boost::make_tuple(boost::ref(b.first)),
boost::make_tuple(boost::ref(b.second)));
COPY_COUNT(0);
MOVE_COUNT(0);
#if BOOST_UNORDERED_TUPLE_ARGS
reset();
x.emplace(boost::unordered::piecewise_construct,
std::make_tuple(std::ref(b.first)), std::make_tuple(std::ref(b.second)));
COPY_COUNT(0);
MOVE_COUNT(0);
std::pair<count_copies const, count_copies> move_source_trial;
reset();
std::make_tuple(std::move(move_source_trial.first));
std::make_tuple(std::move(move_source_trial.second));
int tuple_move_cost = ::unnecessary_copy_tests::count_copies::moves;
int tuple_copy_cost = ::unnecessary_copy_tests::count_copies::copies;
std::pair<count_copies const, count_copies> move_source;
reset();
x.emplace(boost::unordered::piecewise_construct,
std::make_tuple(std::move(move_source.first)),
std::make_tuple(std::move(move_source.second)));
COPY_COUNT(tuple_copy_cost);
MOVE_COUNT(tuple_move_cost);
#if !defined(BOOST_NO_CXX11_HDR_TUPLE) && \
!(defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ < 6) && \
!(defined(BOOST_MSVC) && BOOST_MSVC < 1700)
reset();
x.emplace(boost::unordered::piecewise_construct,
std::forward_as_tuple(b.first), std::forward_as_tuple(b.second));
COPY_COUNT(0);
MOVE_COUNT(0);
#endif
#endif
}
}
RUN_TESTS()