[DEV] add v1.66.0

This commit is contained in:
2018-01-12 21:47:58 +01:00
parent 87059bb1af
commit a97e9ae7d4
49032 changed files with 7668950 additions and 0 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,22 @@
# circular_buffer.idx index script file
# for Boost.circular_buffer Quickbook Doxygen documentation Auto-indexing forcircular_buffer library.
# Copyright (c) 2011 Paul A. Bristow
# Copyright (c) 2003 - 2008 Jan Gaspar
# boost-no-inspect
# Use, modification and distribution is subject to the Boost Software License, Version 1.0.
# (See accompanying file LICENSE_1_0.txt
# or copy at http://www.boost.org/LICENSE_1_0.txt)
# All header files, recursing down to include sub-folders.
!scan-path "boost/circular_buffer" ".*\.hpp" true
# All example source files, assuming no sub-folders.
!scan-path "libs/circular_buffer/example" ".*\.cpp"

View File

@@ -0,0 +1,626 @@
[article Boost.Circular Buffer
[quickbook 1.6]
[id circular_buffer]
[copyright 2003-2013 Jan Gaspar]
[license
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
[@http://www.boost.org/LICENSE_1_0.txt])
]
[authors [Gaspar, Jan]]
[source-mode c++]
]
[/ Links - by (most common) convention, prefixed with double underscore so not confused with other names.]
[def __alert [$./images/alert.png]] [/ Examples of your own images (in doc/html/images/ .]
[def __tip [$./images/tip.png]]
[/ If you provide a file type like .png, you will probably find that the file is missing in the pdf version.]
[/ This is because the default file type specified is .png in html, but .svg for pdf version.]
[/ Some links to external sources.]
[/ You often want to link more than once, so using a def ensures you always refer to the same location.]
[def __boost [@http://www.boost.org/ Boost]] [/Boost.org]
[def __boostroot [@boost: Boost root]] [/ Your boost root]
[/Note the custom boost root url schema for linking to files within the Boost distribution.]
[/Note It can't be used for images, nor for pdf, so not so useful.]
[/def __boostlicense [@http://www.boost.org/LICENSE_1_0.txt Boost License]]
[/ Or refer to your most recent version of Boost.]
[def __boostlicense [@boost:/LICENSE_1_0.txt Boost License]]
[def __boostbook [@http://www.boost.org/doc/html/boostbook.html BoostBook]]
[def __boostbook_docs [@http://www.boost.org/doc/libs/1_53_0/doc/html/boostbook.html BoostBook documentation]]
[def __quickbook [@http://www.boost.org/doc/tools/quickbook/index.html Quickbook]]
[def __quickbook_syntax [@http://www.boost.org/doc/libs/1_53_0/doc/html/quickbook/ref.html Quickbook Syntax Compendium]]
[def __docbook [@http://www.docbook.org/ DocBook]]
[def __doxygen [@http://www.doxygen.org/ Doxygen]]
[def __autoindex [@boost:/tools/auto_index/doc/html/index.html AutoIndex]]
[def __pdf [@http://www.adobe.com/products/acrobat/adobepdf.html PDF]]
[def __textpad [@http://www.textpad.com Textpad]]
[def __emacs [@http://www.gnu.org/software/emacs/ GNU emacs]]
[def __css [@http://en.wikipedia.org/wiki/Cascading_Style_Sheets Cascading Style Sheet]]
[def __intro [link circular_buffer.intro Introduction]] [/Link to a Quickbook section (see below).]
[def __docbook_params [@http://docbook.sourceforge.net/release/xsl/current/doc/ Docbook xsl:param format options]]
[def __cb [classref boost::circular_buffer circular_buffer]]
[def __cbso [classref boost::circular_buffer_space_optimized circular_buffer_space_optimized]]
[def __min_capacity [memberref boost::circular_buffer_space_optimized::min_capacity() min_capacity]]
[def __capacity_control [memberref boost::circular_buffer_space_optimized::capacity_control () capacity_control ]]
[def __debug_support [link circular_buffer.implmentation.debug_support debug support]]
[include ../../../tools/auto_index/include/auto_index_helpers.qbk]
[/ Must be first included file!]
[note A printer-friendly PDF version of this manual is also available.]
[section:intro Introduction]
A Circular Buffer.
[h2 Description]
The term [@http://en.wikipedia.org/wiki/Circular_buffer circular buffer]
(also called a ['ring] or ['cyclic buffer])
refers to an area in memory which is used to store incoming data.
When the buffer is filled,
new data is written starting at the beginning of the buffer and overwriting the old.
[classref boost::circular_buffer] is a STL compliant container.
It is a kind of sequence similar to [@http://www.sgi.com/tech/stl/List.html std::list]
or [@http://www.sgi.com/tech/stl/Deque.html std::deque].
It supports random access iterators, constant time insert and erase operations
at the beginning or the end of the buffer and interoperability with std algorithms.
The __cb is especially designed to provide [*fixed capacity] storage.
When its capacity is exhausted, newly inserted elements will cause elements
to be overwritten, either at the beginning or end of the buffer
(depending on what insert operation is used).
The __cb only allocates memory when created,
when the capacity is adjusted explicitly,
or as necessary to accommodate resizing or assign operations.
[$../../libs/circular_buffer/doc/images/circular_buffer.png]
There is also a __cbso version available.
[$../../libs/circular_buffer/doc/images/space_optimized.png]
__cbso is an adaptation of the __cb
which [*does not allocate memory all at once when created],
instead it allocates memory as needed.
The predictive memory allocation is similar to typical `std::vector` implementation.
Memory is automatically freed as the size of the container decreases.
The memory allocation process of the space-optimized circular buffer.
The __min_capacity of the capacity controller represents
the minimal guaranteed amount of allocated memory.
The allocated memory will never drop under this value.
The default value of the `min_capacity` is set to 0.
The `min_capacity` can be set using the constructor parameter __capacity_control
or the function `set_capacity`.
The space-optimized version is, of course, a little slower.
[endsect] [/section:intro Introduction]
[section:example Circular_buffer example]
Here is a simple example to introduce the class __cb.
[import ../example/circular_buffer_example.cpp]
[circular_buffer_example_1]
This example shows contruction, inserting elements, overwriting and popping.
[circular_buffer_example_2]
[/circular_buffer_example_output - there is no output for this example]
You can see the full example code at [@boost:libs/circular_buffer/example/circular_buffer_example.cpp circular_buffer_example.cpp].
The full annotated description is in the C++ Reference section.
[endsect] [/section:example circular_buffer example]
[section:rationale Rationale]
The basic motivation behind the __cb was to create a container which would [*work seamlessly with STL].
Additionally, the design of the __cb was guided by the following principles:
* Maximum ['efficiency] for envisaged applications.
* Suitable for ['general purpose use].
* The behaviour of the buffer as ['intuitive] as possible.
* Suitable for ['specialization] by means of adaptors. (The __cbso is such an example of the adaptor.)
* Easy to ['debug]. (See Debug Support for details.)
In order to achieve maximum efficiency, the __cb and __cbso store their elements in a
[*contiguous region of memory], which then enables:
* Use of fixed memory and no implicit or unexpected memory allocation.
* Fast constant-time insertion and removal of elements from the front and back.
* Fast constant-time random access of elements.
* Suitability for real-time and performance critical applications.
Possible applications of the circular buffer include:
* Storage of the ['most recently received samples], overwriting the oldest as new samples arrive.
* As an underlying container for a ['bounded buffer]
(see the Bounded Buffer example, code at [@boost:libs/circular_buffer/example/circular_buffer_bound_example.cpp circular_buffer_bound_example.cpp]).
* A kind of ['cache] storing a specified number of last inserted elements.
* Efficient fixed capacity ['FIFO (First In, First Out)],
* Efficient fixed capacity ['LIFO (Last In, First Out)] queue which removes the oldest (inserted as first) elements when full.
[endsect] [/section:rationale Rationale]
[section:implementation Implementation ]
The following paragraphs describe issues that had to be considered during the implementation of the circular_buffer:
[h3 Thread-Safety]
The thread-safety of the __cb is the same as the thread-safety of containers in most STL implementations.
This means the __cb is not fully thread-safe.
The thread-safety is guaranteed only in the sense that simultaneous accesses
to distinct instances of the __cb are safe,
and simultaneous read accesses to a shared __cb are safe.
If multiple threads access a single __cb,
and at least one of the threads may potentially write,
then the user is responsible for ensuring mutual exclusion between the threads during the container accesses.
The mutual exclusion between the threads can be achieved by wrapping
operations of the underlying __cb with a lock acquisition and release.
(See the Bounded Buffer example code at [@boost:libs/circular_buffer/example/circular_buffer_bound_example.cpp circular_buffer_bound_example.cpp])
[h3 Overwrite Operation]
Overwrite operation occurs when an element is inserted into a full __cb -
the old element is being overwritten by the new one.
There was a discussion what exactly "overwriting of an element" means during the formal review.
It may be either a destruction of the original element and
a consequent inplace construction of a new element
or it may be an assignment of a new element into an old one.
The __cb implements assignment because it is more effective.
From the point of business logic of a stored element,
the destruction/construction operation and assignment usually mean the same.
However, in very rare cases (if in any) they may differ.
If there is a requirement for elements to be destructed/constructed instead of being assigned,
consider implementing a wrapper of the element which would implement the assign operator,
and store the wrappers instead.
It is necessary to note that storing such wrappers has a drawback.
The destruction/construction will be invoked on every assignment of the wrapper -
not only when a wrapper is being overwritten (when the buffer is full)
but also when the stored wrappers are being shifted
(e.g. as a result of insertion into the middle of container).
[h3 Writing to a Full Buffer]
There are several options how to cope if a data source produces more data than can fit in the fixed-sized buffer:
* Inform the data source to wait until there is room in the buffer (e.g. by throwing an overflow exception).
* If the oldest data is the most important, ignore new data from the source until there is room in the buffer again.
* If the latest data is the most important, write over the oldest data.
* Let the producer to be responsible for checking the size of the buffer prior writing into it.
It is apparent that the __cb implements the third option.
But it may be less apparent it does not implement any other option -
especially the first two.
One can get an impression that the __cb should implement first three options
and offer a mechanism of choosing among them. This impression is wrong.
The __cb was designed and optimized to be circular
(which means overwriting the oldest data when full).
If such a controlling mechanism had been enabled,
it would just complicate the matters
and the usage of the __cb would be probably less straightforward.
Moreover, the first two options (and the fourth option as well)
do not require the buffer to be circular at all.
If there is a need for the first or second option, consider implementing an adaptor of e.g. std::vector.
In this case the __cb is not suitable for adapting, because,
contrary to std::vector, it bears an overhead for its circular behaviour.
[h3 Reading/Removing from an Empty Buffer]
When reading or removing an element from an empty buffer,
the buffer should be able to notify the data consumer
(e.g. by throwing underflow exception) that there are no elements stored in it.
The __cb does not implement such a behaviour for two reasons:
* It would introduce a performance overhead.
* No other std container implements it this way.
It is considered to be a bug to read or remove an element
(e.g. by calling [memberref boost::circular_buffer::front() front()]
or [memberref boost::circular_buffer::pop_back() pop_back()])
from an empty std container and from an empty __cb as well.
The data consumer has to test if the container is not empty before reading/removing from it by testing
[memberref boost::circular_buffer::empty empty()].
However, when reading from the __cb,
there is an option to rely on the [memberref boost::circular_buffer::at() at()]
method which throws an exception when the index is out of range.
[h3 Iterator Invalidation]
An iterator is usually considered to be invalidated if an element,
the iterator pointed to, had been removed or overwritten by an another element.
This definition is enforced by the Debug Support and is documented for every method.
However, some applications utilizing __cb may require less strict definition:
an iterator is invalid only if it points to an uninitialized memory.
Consider following example:
[import ../example/circular_buffer_iter_example.cpp]
[circular_buffer_iter_example_1]
The iterator does not point to the original element any more
(and is considered to be invalid from the "strict" point of view)
but it still points to the same valid place in the memory.
This "soft" definition of iterator invalidation is supported by the __cb
but should be considered as an implementation detail rather than a full-fledged feature.
The rules when the iterator is still valid can be inferred from the code in
[@boost:libs/circular_buffer/test/soft_iterator_invalidation.cpp soft_iterator_invalidation.cpp].
[h3 Move emulation and rvalues]
Since Boost 1.54.0 support for move semantics was implemented using
the [@boost:libs/move/index.html Boost.Move] library.
If rvalue references are available __cb will use them, but if not it uses a close,
but imperfect emulation. On such compilers:
* Non-copyable objects can be stored in the containers.
They can be constructed in place using `emplace`, or if they support
Boost.Move, moved into place.
* The containers themselves are not movable.
* Argument forwarding is not perfect.
__cb will use rvalues and move emulations for value types only if move constructor and move assignment operator of the value type do not throw;
or if the value type has no copy constructor.
Some methods won't use move constructor for the value type at all, if the constructor throws. This is
required for data consistency and avoidance of situations, when aftrer an exception __cb
contains moved away objects along with the good ones.
See documentation for [@boost:libs/type_traits/doc/html/boost_typetraits/reference/is_copy_constructible.html `is_copy_constructible`], [@boost:libs/type_traits/doc/html/boost_typetraits/reference/is_nothrow_move_assignable.html `is_nothrow_move_assignable`] and [@boost:libs/type_traits/doc/html/boost_typetraits/reference/is_nothrow_move_constructible.html `is_nothrow_move_constructible`] type triats.
There you'll find information about how to make constructor of class noexcept and how to make a non-copyable
class in C++03 and C++98.
Performance of __cb will *greatly improve* if value type has noexcept move constructor and noexcept move assignment.
[h3 Exceptions of move_if_noexcept(T&)]
Reference documentation of the __cb contains notes like "Throws: See Exceptions of `move_if_noexcept(T&)`".
That note means the following: `move_if_noexcept(T& value)` does not throws exceptions at all, but it returns
`value` as rvalue reference only if class `T` have noexcept move constructor and noexcept move assignment operator;
or if it has no copy constructor. Otherwise `move_if_noexcept(T& value)` returns `value` as const reference.
This leads us to the following situation:
* If `value` has a noexcept move constructor and noexcept move assignment operator, then no exceptions will be thrown at all.
* If `value` has a throwing move constructor and some copy constructor, then method may throw exceptions of copy constructor.
* If `value` has no copy constructor, then method may throw exceptions of move constructor.
`move_if_noexcept(T&)` uses [@boost:libs/move/index.html Boost.Move], [@boost:libs/type_traits/doc/html/boost_typetraits/reference/is_copy_constructible.html `is_copy_constructible`], [@boost:libs/type_traits/doc/html/boost_typetraits/reference/is_nothrow_move_assignable.html `is_nothrow_move_assignable`] and [@boost:libs/type_traits/doc/html/boost_typetraits/reference/is_nothrow_move_constructible.html `is_nothrow_move_constructible`] type triats.
[h3 Caveats]
The __cb should not be used for storing pointers to dynamically allocated objects.
When a circular buffer becomes full, further insertion will overwrite the stored pointers
- resulting in a [*memory leak]. One recommend alternative is the use of smart pointers, for example
[@http://www.boost.org/doc/libs/1_53_0/libs/smart_ptr/smart_ptr.htm Boost Smart pointers].
[@http://en.wikipedia.org/wiki/Std::auto_ptr std::auto_ptr]
[caution Any container of `std::auto_ptr` is considered particularly hazardous.]
[tip Never create a circular buffer of `std::auto_ptr`.
Refer to Scott Meyers' excellent book Effective STL for a detailed discussion.
(Meyers S., Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library.
Addison-Wesley, 2001.)
]
While internals of a __cb are circular, [*iterators are not].
Iterators of a __cb are only valid for the range `\[begin(), end()\]`,
so for example: iterators `(begin() - 1)` and `(end() + 1)` are both invalid.
[h3 Debug Support]
In order to help a programmer to avoid and find common bugs,
the __cb can be enabled to provide a kind of debug support.
When the debugging functionality is enabled, the __cb maintains a list of valid iterators.
As soon as any element gets destroyed all iterators pointing to this element
are removed from this list and explicitly invalidated (an invalidation flag is set).
The debug support also consists of many assertions (`BOOST_ASSERT` macros)
which ensure the __cb and its iterators are used in the correct manner at runtime.
In case an invalid iterator is used, the assertion will report an error.
The connection of explicit iterator invalidation and assertions
makes a very robust debug technique which catches most of the errors.
Moreover, the uninitialized memory allocated by __cb is filled with the value `0xcc` in the debug mode.
When debugging the code, this can help the programmer to recognize the initialized memory from the uninitialized.
For details refer the source code [@boost:boost/circular_buffer/debug.hpp circular_buffer/debug.hpp].
[caution Since the debugging code makes __cb and its iterators more interconnected, thread safety guarantees of __cb
are different when debug support is enabled. In addition to the container itself, all iterators tracked by the container
(including any copies thereof) must be protected from concurrent access. In particular, this includes copying, destroying or
obtaining iterators from the container, even if for read-only access.]
The debug support is disabled by default. To enable it, one has to define `BOOST_CB_ENABLE_DEBUG` macro with the value of 1
while compiling the code using __cb.
[h3 Compatibility with Interprocess library]
The __cb is compatible with the [@boost:libs/interprocess/index.html Boost.Interprocess]
[/ This should be in @boost:libs/interprocess/doc/index.html ]
library used for interprocess communication.
Considering that the circular_buffer's debug support relies on 'raw' pointers
(which is not permited by the Interprocess library)
the code has to compiled with debug support disabled (i.e. with `BOOST_CB_ENABLE_DEBUG` macro not defined or defined to 0).
Not doing that will cause the compilation to fail.
[endsect] [/section:implementation Implementation ]
[section:examples More Examples]
[h3 Summing all the values in a circular buffer]
[import ../example/circular_buffer_sum_example.cpp]
[circular_buffer_sum_example_1]
[/circular_buffer_example_output - there is no output for this example]
The __cb has a capacity of three `int`.
Therefore, the size of the buffer will never exceed three.
The `std::accumulate` algorithm evaluates the sum of the stored elements.
The semantics of the __cb can be inferred from the assertions.
You can see the full example code at [@boost:libs/circular_buffer/example/circular_buffer_sum_example.cpp circular_buffer_sum_example.cpp].
[h3 Bounded Buffer Example]
The bounded buffer is normally used in a producer-consumer mode:
producer threads produce items and store them in the container
and consumer threads remove these items and process them.
The bounded buffer has to guarantee that
* producers do not insert items into the container when the container is full,
* consumers do not try to remove items when the container is empty,
* each produced item is consumed by exactly one consumer.
[import ../example/circular_buffer_bound_example.cpp]
[circular_buffer_bound_example_1]
[/ there is no output for this example]
The bounded_buffer relies on [@boost:/doc/html/thread.html Boost.Thread]
and [@boost:libs/bind/index.html Boost.Bind] libraries
and [@boost:libs/utility/call_traits.htm Boost.call_traits utility].
The [memberref boost::circular_buffer::push_front() push_front()]
method is called by the producer thread in order to insert a new item into the buffer.
The method locks the mutex and waits until there is a space for the new item.
(The mutex is unlocked during the waiting stage and has to be regained when the condition is met.)
If there is a space in the buffer available,
the execution continues and the method inserts the item at the end of the __cb.
Then it increments the number of unread items and unlocks the mutex
(in case an exception is thrown before the mutex is unlocked,
the mutex is unlocked automatically by the destructor of the scoped_lock).
At last the method notifies one of the consumer threads
waiting for a new item to be inserted into the buffer.
The [memberref boost::circular_buffer::pop_back() pop_back()]
method is called by the consumer thread in order to read the next item from the buffer.
The method locks the mutex and waits until there is an unread item in the buffer.
If there is at least one unread item,
the method decrements the number of unread items and reads the next item from the __cb.
Then it unlocks the mutex and notifies one of the producer threads
waiting for the buffer to free a space for the next item.
The `bounded buffer::pop_back()`
method [*does not remove the item] but the item is left
in the circular_buffer which then [*replaces it with a new one]
(inserted by a producer) when the circular_buffer is full.
This technique is more effective than removing the item
explicitly by calling the [memberref boost::circular_buffer::pop_back() circular_buffer::pop_back()]
method of the __cb.
This claim is based on the assumption that an assignment (replacement)
of a new item into an old one is more effective than a destruction
(removal) of an old item and a consequent inplace construction (insertion) of a new item.
For comparison of bounded buffers based on different containers compile and
run [@boost:libs/circular_buffer/test/bounded_buffer_comparison.cpp bounded_buffer_comparison.cpp].
The test should reveal the bounded buffer based on the __cb is most effective
closely followed by the `std::deque` based bounded buffer.
(In reality, the result may differ sometimes because the test
is always affected by external factors such as immediate CPU load.)
[import ../test/bounded_buffer_comparison.cpp]
You can see the full test code at [@boost:libs/circular_buffer/test/bounded_buffer_comparison.cpp bounded_buffer_comparison.cpp],
and an example of output is [bounded_buffer_comparison_output].
[endsect] [/section:examples More examples]
[section:headers Header Files]
The circular buffer library is defined in the file [@boost:boost/circular_buffer.hpp circular_buffer.hpp].
#include <boost/circular_buffer.hpp>
(There is also a forward declaration for the __cb
in the header file [@boost:boost/circular_buffer_fwd.hpp circular_buffer_fwd.hpp]).
The __cb is defined in the file [@boost:boost/circular_buffer/base.hpp base.hpp].
The __cbso is defined in the file [@boost:boost/circular_buffer/space_optimized.hpp space_optimized.hpp].
[endsect] [/section:headers Header Files]
[section:concepts Modelled Concepts]
[@http://www.sgi.com/tech/stl/RandomAccessContainer.html Random Access Container],
[@http://www.sgi.com/tech/stl/FrontInsertionSequence.html Front Insertion Sequence], and
[@http://www.sgi.com/tech/stl/BackInsertionSequence.html Back Insertion sequence]
[endsect] [/section:concepts Modelled Concepts]
[section:template_params Template Parameters]
[table:templ Template parameter requirements
[[parameter] [Requirements]]
[[T] [The type of the elements stored in the circular_buffer.
The T has to be [@boost:libs/utility/Assignable.html Assignable]
and [@boost:libs/utility/CopyConstructible.html CopyConstructible].
Moreover T has to be [@http://www.sgi.com/tech/stl/DefaultConstructible.html DefaultConstructible]
if supplied as a default parameter when invoking some of the circular_buffer's methods,
e.g. `insert(iterator pos, const value_type& item = value_type())`.
And [@http://www.sgi.com/tech/stl/EqualityComparable.html EqualityComparable]
and/or [@boost:libs/utility/LessThanComparable.html LessThanComparable]
if the circular_buffer will be compared with another container.]]
[[Alloc] [The allocator type used for all internal memory management.
The Alloc has to meet the allocator requirements imposed by STL.]]
]
[endsect] [/section:template_params Template Parameters]
[section:tickets Trac Tickets]
Report and view bugs and features by adding a ticket at [@https://svn.boost.org/trac/boost Boost.Trac].
Existing open tickets for this library alone can be viewed
[@https://svn.boost.org/trac/boost/query?status=assigned&status=new&status=reopened&component=circular_buffer&col=id&col=summary&col=status&col=owner&col=type&col=milestone&order=priority here].
Existing tickets for this library - including closed ones - can be viewed
[@https://svn.boost.org/trac/boost/query?status=assigned&status=closed&status=new&status=reopened&component=circular_buffer&col=id&col=summary&col=status&col=owner&col=type&col=milestone&order=priority here].
Type: Bugs
[@https://svn.boost.org/trac/boost/ticket/4100 #4100] Some boost classes have sizeof that depends on NDEBUG.
[@https://svn.boost.org/trac/boost/ticket/5362 #5362] circular_buffer does not compile with BOOST_NO_EXCEPTIONS.
[@https://svn.boost.org/trac/boost/ticket/6277 #6277] Checked iterators are not threadsafe.
[@https://svn.boost.org/trac/boost/ticket/6747 #6747] Circular_Buffer / Bounded_Buffer inside Template class problem.
[@https://svn.boost.org/trac/boost/ticket/7025 #7025] circular buffer reports warning: " type qualifiers ignored on function return type" while compile.
[@https://svn.boost.org/trac/boost/ticket/7950 #7950] Eliminate W4-warnings under VS2005.
[@https://svn.boost.org/trac/boost/ticket/8012 #8012] Inconsistency in `linearize()`.
[@https://svn.boost.org/trac/boost/ticket/8438 #8438] `vector` & __cb storage misbehave when using compiler optimizations.
Type: Feature Requests
[@https://svn.boost.org/trac/boost/ticket/5511 #5511] Documentation needs some improvement.
[@https://svn.boost.org/trac/boost/ticket/7888 #7888] circular_buffer should support move semantics.
Type: Patches
[@https://svn.boost.org/trac/boost/ticket/8032 #8032] Warning fixes in circular_buffer.
[endsect] [/section:tickets Trac Tickets]
[section:release Release Notes]
[h4 Boost 1.56]
* C++11 allocator model support implemented by Glen Fernandes using Boost allocator_traits.
[h4 Boost 1.55]
* Documentation refactored by Paul A. Bristow using Quickbook, Doxygen and Autoindexing.
* Rvalue references emulation added by Antony Polukhin using Boost.Move.
[h4 Boost 1.42]
* Added methods erase_begin(size_type) and erase_end(size_type) with constant complexity for such types of stored elements which do not need an explicit destruction e.g. int or double.
* Similarly changed implementation of the clear() method and the destructor so their complexity is now constant for such types of stored elements which do not require an explicit destruction (the complexity for other types remains linear).
[h4 Boost 1.37]
*Added new methods is_linearized() and rotate(const_iterator).
* Fixed bugs:
[@https://svn.boost.org/trac/boost/ticket/1987 #1987] Patch to make circular_buffer.hpp #includes absolute.
[@https://svn.boost.org/trac/boost/ticket/1852 #1852] Copy constructor does not copy capacity.
[h4 Boost 1.36]
* Changed behaviour of the circular_buffer(const allocator_type&) constructor.
Since this version the constructor does not allocate any memory and both capacity and size are set to zero.
* Fixed bug:
[@https://svn.boost.org/trac/boost/ticket/191 #1919] Default constructed circular buffer throws std::bad_alloc.
[h4 Boost 1.35]
* Initial release.
[endsect] [/section:release Release Notes]
[section:acknowledgements Acknowledgements]
Thomas Witt in 2002 produced a prototype called cyclic buffer.
The circular_buffer has a short history. Its first version was a std::deque adaptor.
This container was not very effective because of many reallocations when inserting/removing an element.
Thomas Wenish did a review of this version and
motivated me to create a circular buffer which allocates memory at once when created.
The second version adapted `std::vector` but it has been abandoned soon
because of limited control over iterator invalidation.
The current version is a full-fledged STL compliant container.
Pavel Vozenilek did a thorough review of this version and came with many good ideas and improvements.
The idea of the space optimized circular buffer has been introduced by Pavel Vozenilek.
Also, I would like to thank Howard Hinnant, Nigel Stewart and everyone
who participated at the formal review for valuable comments and ideas.
Paul A. Bristow refactored the documentation in 2013 to use the full power of Quickbook, Doxygen and Autoindexing.
[endsect] [/section:acknowledgements Acknowledgements]
[section:version_id Documentation Version Info]
Last edit to Quickbook file __FILENAME__ was at __TIME__ on __DATE__.
[tip This should appear on the pdf version
(but may be redundant on a html version where the last edit date is on the first (home) page).]
[warning Home page "Last revised" is GMT, not local time. Last edit date is local time.]
[/See also Adobe Reader pdf File Properties for creation date, and PDF producer, version and page count.]
[endsect] [/section:version_id Version Info]
[xinclude autodoc.xml] [/ Using Doxygen reference documentation.]
[/ The position of this in the Quickbook determines the location of the Doxygen references section.]
[/ Index(es) should be invoked in the main module, not within a section.]
'''
<index/>
'''
[/ circular_buffer.qbk
Copyright 2013 Paul A. Bristow.
Copyright 2003-2008 Jan Gaspar.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

View File

@@ -0,0 +1,219 @@
# Boost.circular_buffer library documentation Jamfile.v2
#
# Copyright Paul A. Bristow 2013.
# Copyright Jan Gaspar 2003-2008.
# Use, modification and distribution is subject to
# the Boost Software License, Version 1.0.
# (See accompanying file LICENSE_1_0.txt
# or copy at http://www.boost.org/LICENSE_1_0.txt)
path-constant nav_images : html/images/ ; # png and svg images for home, next, note, tip...
path-constant images_location : html/images ; # location of my SVG and PNG images referenced by Quickbook.
path-constant pdf_images_location : .. ; # location of SVG and PNG images referenced by pdf.
path-constant here : . ; # location of /doc folder.
# echo "nav_images = " $(nav_images) ; # "nav_images = I:\boost-trunk\libs\circular_buffer\doc\html\images
# echo "images_location = " $(images_location) ; # images_location = I:\boost-trunk\libs\circular_buffer\doc\html\images
# echo "pdf_images_location = " $(pdf_images_location) #
import modules ;
using auto-index ;
using doxygen ; # Required if you want to use Doxygen.
using quickbook ;
doxygen autodoc
:
# List all the files individually (RECURSIVE=NO ).
[ glob ../../../boost/circular_buffer.hpp ]
[ glob ../../../boost/circular_buffer/base.hpp ]
[ glob ../../../boost/circular_buffer/space_optimized.hpp ]
[ glob ../../../boost/circular_buffer/details.hpp ] # Needed for capacity_control at least.
[ glob ../../../boost/circular_buffer/debug.hpp ] # not needed?
:
# Pass some setting parameters to Doxygen.
<doxygen:param>WARNINGS=YES # Default NO, but useful to see warnings, especially in a logfile.
# It is also wise to to set a warnings logfile like this:
<doxygen:param>WARN_LOGFILE=AutoDoxywarnings.log # This may not be empty (usually not a good sign!), depending on options chosen.
# Much better to send message to a logfile than the default stderr.
# and make sure that there are no Doxygen errors or significant warnings in the log file.
<doxygen:param>RECURSIVE=NO # Search recursively down .hpp and .cpp subdirectories.
<doxygen:param>EXTRACT_ALL=NO
<doxygen:param>EXTRACT_PRIVATE=NO # NO means do not extract info about private member functions and data.
<doxygen:param>HIDE_UNDOC_MEMBERS=YES # Only show members that have some documentation like \param, \return ...
<doxygen:param>MACRO_EXPANSION=YES # YES will expand all macro names in the source code (default = NO).
<doxygen:param>EXPAND_ONLY_PREDEF=YES # If the EXPAND_ONLY_PREDEF and MACRO_EXPANSION tags are both set to YES
# then the macro expansion is limited to the macros specified with the PREDEFINED and EXPAND_AS_DEFINED tags.
# If EXPAND_ONLY_PREDEF tag can be used to specify a list of macro names that should be expanded (as defined).
# The PREDEFINED tag can be used to specify one or more macro names that are defined
# before the preprocessor is started (similar to the -D option of gcc).
# The argument of the tag is a list of macros of the form:
# name or name=definition (no spaces).
# If the definition and the "=" are omitted, "=1" is assumed.
# To prevent a macro definition from being undefined via #undef or
# recursively expanded use the := operator instead of the = operator.
# See http://www.stack.nl/~dimitri/doxygen/config.html#cfg_predefined.
# static char *malloc BOOST_PREVENT_MACRO_SUBSTITUTION(const size_type bytes);
# will not produce a helpful Doxygen output, so
# replace some with more helpful text, or none, for example:
<doxygen:param>"PREDEFINED= \\
\"BOOST_PREVENT_MACRO_SUBSTITUTION\" \\
\"BOOST_STATIC_CONSTANT(T,V)=static x const y\" \\
\"BOOST_UNITS_AUTO_STATIC_CONSTANT(a,b)=static const auto a = b\" \\
\"BOOST_DEDUCED_TYPENAME=typename\" \\
\"BOOST_CONSTEXPR=constexpr\" \\
\"BOOST_CONTAINER_NOEXCEPT=noexcept\" \\
\"BOOST_CONTAINER_NOEXCEPT_IF(T)=noexcept(T)\" \\
\"BOOST_UNITS_TYPEOF(a)=typeof(a)\" \\
\"BOOST_UNITS_HAS_TYPEOF=1\" \\
\"BOOST_MPL_ASSERT(expr)=\" \\
\"BOOST_ASSERT(expr)=\" \\
\"BOOST_RV_REF(T)=T &&\" \\
\"ASSERT(x)=assert(x)\" \\
\"__cplusplus \""
# BOOST_PREVENT_MACRO_SUBSTITUTION, will not be replaced by ,
# BOOST_STATIC_CONSTANT will be replaced by "static x const y",
# BOOST_DEDUCED_TYPENAME will be replaced by "typename",
# BOOST_CONSTEXPR will be replaced by "constexpr".
<doxygen:param>EXCLUDE_SYMBOLS=*_throws
# <doxygen:param>IMAGE_PATH="../images" # for circular_buffer.png
# See autodoxywarnings.log to check this is correct.
# The syntax hoops to jump through are 'interesting' for more than one PREDEFINED,
# and to permit spaces within definitions (use double quotes).
# Don't forget that every double quote " needs a preceeding \trip character!
# and that each trailing continuation \ needs a preceeding \trip character too!
# And finally that if more than one item is included (as here) the whole is
# enclosed in "PREDEFINED=... ", but without a leading \. Go figure...
# A grep for PREDEFINED= in jamfiles will reveal even more complex examples.
# Boost Libraries with useful examples are: Accumulators, Interprocess, MPI, Random, Units, Expressive.
# Optionally, you can provide a Reference section name specific for your library, for example:
<xsl:param>"boost.doxygen.reftitle=Boost.Circular_buffer C++ Reference"
;
xml circular_buffer : circular_buffer.qbk ;
using boostbook ;
boostbook standalone
:
circular_buffer
:
# General settings
# =================
<format>html:<xsl:param>boost.root=../../../..
<format>html:<xsl:param>img.src.path=../../../../doc/html/
<format>docbook:<xsl:param>boost.root=boost:
# Options for html and pdf
# ========================
# No indent on body text:
<xsl:param>body.start.indent=0pt
# Margin size:
<xsl:param>page.margin.inner=0.5in
# Margin size:
<xsl:param>page.margin.outer=0.5in
# Yes, we want graphics for admonishments:
<xsl:param>admon.graphics=1
# HTML options:
# =============
# Use graphics icons not text for navigation:
<xsl:param>navig.graphics=1
# How far down we chunk nested sections, basically all of them:
<xsl:param>chunk.section.depth=2
# Don't put the first section on the same page as the TOC itself:
<xsl:param>chunk.first.sections=1
# How far down sections get TOC's
<xsl:param>toc.section.depth=4
# Max depth in each TOC:
<xsl:param>toc.max.depth=2
# How far down we go with TOC's
<xsl:param>generate.section.toc.level=10
# Horizontal ? spacing in table cells.
<format>html:<xsl:param>html.cellspacing=3 # pixels
# Vertical spacing in table cells.
<format>html:<xsl:param>html.cellpadding=5 # pixels
# Not sure if these are right way round?
<auto-index>on # Turns on index (or off).
# Turns on (or off) index-verbose for diagnostic info (using /bin auto-index-verbose folders).
<auto-index-verbose>on
<format>pdf:<auto-index-internal>off # on (or off) to use internally generated indexes.
<format>html:<xsl:param>index.on.type=1 # = 1 For the native stylesheets to generate multiple different indexes.
<auto-index-script>circular_buffer.idx # Specifies the name of the script to load for circular_buffer.
<auto-index-prefix>../../.. # Will get you back up to /circular_buffer, so !scan-path "boost/circular_buffer/" is where *.hpp will be,
# and /libs/circular_buffer for other files.
# Without this would need !scan-path "../../../boost/circular_buffer"
# Used by Quickbook to invoke indexing.
# Required by boost-trunk/doc/ see jamfile.v2 to use auto-index.
# Choose indexing method for html:
<format>html:<auto-index-internal>on
<format>docbook:<auto-index-internal>on
# PDF Options:
# ============
# TOC Generation: this is needed for FOP-0.9 and later:
<format>pdf:<xsl:param>fop1.extensions=0
# Or enable this if you're using XEP:
<format>pdf:<xsl:param>xep.extensions=1
# TOC generation: this is needed for FOP 0.2, but must not be set to zero for FOP-0.9!
<format>pdf:<xsl:param>fop.extensions=0
# No indent on body text:
<xsl:param>body.start.indent=0pt
# Margin size:
<xsl:param>page.margin.inner=0.5in
# Margin size:
<xsl:param>page.margin.outer=0.5in
# Yes, we want graphics for admonishments:
<xsl:param>admon.graphics=1
# Set these one for PDF generation *only*:
# default png graphics are awful in PDF form,
# better use SVG instead:
<format>pdf:<xsl:param>admon.graphics.extension=".svg"
#<format>pdf:<xsl:param>admon.graphics.extension=".png" # Only png images are available.
# Don't need this, default path works OK:
#<format>pdf:<xsl:param>admon.graphics.path=$(nav_images)/ # next, prev, note, tip ... for pdf.
<format>pdf:<xsl:param>use.role.for.mediaobject=1
<format>pdf:<xsl:param>preferred.mediaobject.role=print
<format>pdf:<xsl:param>img.src.path=$(pdf_images_location)/ # graphics (diagrams) for pdf.
<format>pdf:<xsl:param>draft.mode="no"
<format>pdf:<xsl:param>boost.url.prefix=../../../..
<dependency>autodoc #
<dependency>png_install
;
# Install (copy) the 'master' copies of all icon images (both PNG and SVG)
# and the Boost logo from your current Boost-root
# to the local /doc/html/images folder so that html is complete and standalone.
install png_install : [ glob $(here)/*.png ] : <location>$(here)/../../../doc/html/images ;
# install pdf-install : standalone : <install-type>PDF <location>. ;
# Effectively copies the file from \bin folder to the \doc folder,
# but will not work as expected if doxygen and/or autoindex is used
# because a modified pdf file is created, so this command
# will rename the file to the expected filename, here circular_buffer.pdf.
install pdfinstall : standalone : <install-type>PDF <location>. <name>circular_buffer.pdf ;
###############################################################################
alias boostdoc
: standalone/<format>docbook
:
:
: ;
explicit boostdoc ;
alias boostrelease ;
explicit boostrelease ;

View File

@@ -0,0 +1,316 @@
// Comparison of bounded buffers based on different containers.
// Copyright (c) 2003-2008 Jan Gaspar
// Copyright 2013 Paul A. Bristow. Added some Quickbook snippet markers.
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/circular_buffer.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition.hpp>
#include <boost/thread/thread.hpp>
#include <boost/call_traits.hpp>
#include <boost/progress.hpp>
#include <boost/bind.hpp>
#include <deque>
#include <list>
#include <string>
#include <iostream>
const unsigned long QUEUE_SIZE = 1000L;
const unsigned long TOTAL_ELEMENTS = QUEUE_SIZE * 1000L;
template <class T>
class bounded_buffer {
public:
typedef boost::circular_buffer<T> container_type;
typedef typename container_type::size_type size_type;
typedef typename container_type::value_type value_type;
typedef typename boost::call_traits<value_type>::param_type param_type;
explicit bounded_buffer(size_type capacity) : m_unread(0), m_container(capacity) {}
void push_front(param_type item) {
boost::mutex::scoped_lock lock(m_mutex);
m_not_full.wait(lock, boost::bind(&bounded_buffer<value_type>::is_not_full, this));
m_container.push_front(item);
++m_unread;
lock.unlock();
m_not_empty.notify_one();
}
void pop_back(value_type* pItem) {
boost::mutex::scoped_lock lock(m_mutex);
m_not_empty.wait(lock, boost::bind(&bounded_buffer<value_type>::is_not_empty, this));
*pItem = m_container[--m_unread];
lock.unlock();
m_not_full.notify_one();
}
private:
bounded_buffer(const bounded_buffer&); // Disabled copy constructor
bounded_buffer& operator = (const bounded_buffer&); // Disabled assign operator
bool is_not_empty() const { return m_unread > 0; }
bool is_not_full() const { return m_unread < m_container.capacity(); }
size_type m_unread;
container_type m_container;
boost::mutex m_mutex;
boost::condition m_not_empty;
boost::condition m_not_full;
};
template <class T>
class bounded_buffer_space_optimized {
public:
typedef boost::circular_buffer_space_optimized<T> container_type;
typedef typename container_type::size_type size_type;
typedef typename container_type::value_type value_type;
typedef typename boost::call_traits<value_type>::param_type param_type;
explicit bounded_buffer_space_optimized(size_type capacity) : m_container(capacity) {}
void push_front(param_type item) {
boost::mutex::scoped_lock lock(m_mutex);
m_not_full.wait(lock, boost::bind(&bounded_buffer_space_optimized<value_type>::is_not_full, this));
m_container.push_front(item);
lock.unlock();
m_not_empty.notify_one();
}
void pop_back(value_type* pItem) {
boost::mutex::scoped_lock lock(m_mutex);
m_not_empty.wait(lock, boost::bind(&bounded_buffer_space_optimized<value_type>::is_not_empty, this));
*pItem = m_container.back();
m_container.pop_back();
lock.unlock();
m_not_full.notify_one();
}
private:
bounded_buffer_space_optimized(const bounded_buffer_space_optimized&); // Disabled copy constructor
bounded_buffer_space_optimized& operator = (const bounded_buffer_space_optimized&); // Disabled assign operator
bool is_not_empty() const { return m_container.size() > 0; }
bool is_not_full() const { return m_container.size() < m_container.capacity(); }
container_type m_container;
boost::mutex m_mutex;
boost::condition m_not_empty;
boost::condition m_not_full;
};
template <class T>
class bounded_buffer_deque_based {
public:
typedef std::deque<T> container_type;
typedef typename container_type::size_type size_type;
typedef typename container_type::value_type value_type;
typedef typename boost::call_traits<value_type>::param_type param_type;
explicit bounded_buffer_deque_based(size_type capacity) : m_capacity(capacity) {}
void push_front(param_type item) {
boost::mutex::scoped_lock lock(m_mutex);
m_not_full.wait(lock, boost::bind(&bounded_buffer_deque_based<value_type>::is_not_full, this));
m_container.push_front(item);
lock.unlock();
m_not_empty.notify_one();
}
void pop_back(value_type* pItem) {
boost::mutex::scoped_lock lock(m_mutex);
m_not_empty.wait(lock, boost::bind(&bounded_buffer_deque_based<value_type>::is_not_empty, this));
*pItem = m_container.back();
m_container.pop_back();
lock.unlock();
m_not_full.notify_one();
}
private:
bounded_buffer_deque_based(const bounded_buffer_deque_based&); // Disabled copy constructor
bounded_buffer_deque_based& operator = (const bounded_buffer_deque_based&); // Disabled assign operator
bool is_not_empty() const { return m_container.size() > 0; }
bool is_not_full() const { return m_container.size() < m_capacity; }
const size_type m_capacity;
container_type m_container;
boost::mutex m_mutex;
boost::condition m_not_empty;
boost::condition m_not_full;
};
template <class T>
class bounded_buffer_list_based {
public:
typedef std::list<T> container_type;
typedef typename container_type::size_type size_type;
typedef typename container_type::value_type value_type;
typedef typename boost::call_traits<value_type>::param_type param_type;
explicit bounded_buffer_list_based(size_type capacity) : m_capacity(capacity) {}
void push_front(param_type item) {
boost::mutex::scoped_lock lock(m_mutex);
m_not_full.wait(lock, boost::bind(&bounded_buffer_list_based<value_type>::is_not_full, this));
m_container.push_front(item);
lock.unlock();
m_not_empty.notify_one();
}
void pop_back(value_type* pItem) {
boost::mutex::scoped_lock lock(m_mutex);
m_not_empty.wait(lock, boost::bind(&bounded_buffer_list_based<value_type>::is_not_empty, this));
*pItem = m_container.back();
m_container.pop_back();
lock.unlock();
m_not_full.notify_one();
}
private:
bounded_buffer_list_based(const bounded_buffer_list_based&); // Disabled copy constructor
bounded_buffer_list_based& operator = (const bounded_buffer_list_based&); // Disabled assign operator
bool is_not_empty() const { return m_container.size() > 0; }
bool is_not_full() const { return m_container.size() < m_capacity; }
const size_type m_capacity;
container_type m_container;
boost::mutex m_mutex;
boost::condition m_not_empty;
boost::condition m_not_full;
};
template<class Buffer>
class Consumer {
typedef typename Buffer::value_type value_type;
Buffer* m_container;
value_type m_item;
public:
Consumer(Buffer* buffer) : m_container(buffer) {}
void operator()() {
for (unsigned long i = 0L; i < TOTAL_ELEMENTS; ++i) {
m_container->pop_back(&m_item);
}
}
};
template<class Buffer>
class Producer {
typedef typename Buffer::value_type value_type;
Buffer* m_container;
public:
Producer(Buffer* buffer) : m_container(buffer) {}
void operator()() {
for (unsigned long i = 0L; i < TOTAL_ELEMENTS; ++i) {
m_container->push_front(value_type());
}
}
};
template<class Buffer>
void fifo_test(Buffer* buffer) {
// Start of measurement
boost::progress_timer progress;
// Initialize the buffer with some values before launching producer and consumer threads.
for (unsigned long i = QUEUE_SIZE / 2L; i > 0; --i) {
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581))
buffer->push_front(Buffer::value_type());
#else
buffer->push_front(BOOST_DEDUCED_TYPENAME Buffer::value_type());
#endif
}
Consumer<Buffer> consumer(buffer);
Producer<Buffer> producer(buffer);
// Start the threads.
boost::thread consume(consumer);
boost::thread produce(producer);
// Wait for completion.
consume.join();
produce.join();
// End of measurement
}
int main(int /*argc*/, char* /*argv*/[]) {
bounded_buffer<int> bb_int(QUEUE_SIZE);
std::cout << "bounded_buffer<int> ";
fifo_test(&bb_int);
bounded_buffer_space_optimized<int> bb_space_optimized_int(QUEUE_SIZE);
std::cout << "bounded_buffer_space_optimized<int> ";
fifo_test(&bb_space_optimized_int);
bounded_buffer_deque_based<int> bb_deque_based_int(QUEUE_SIZE);
std::cout << "bounded_buffer_deque_based<int> ";
fifo_test(&bb_deque_based_int);
bounded_buffer_list_based<int> bb_list_based_int(QUEUE_SIZE);
std::cout << "bounded_buffer_list_based<int> ";
fifo_test(&bb_list_based_int);
bounded_buffer<std::string> bb_string(QUEUE_SIZE);
std::cout << "bounded_buffer<std::string> ";
fifo_test(&bb_string);
bounded_buffer_space_optimized<std::string> bb_space_optimized_string(QUEUE_SIZE);
std::cout << "bounded_buffer_space_optimized<std::string> ";
fifo_test(&bb_space_optimized_string);
bounded_buffer_deque_based<std::string> bb_deque_based_string(QUEUE_SIZE);
std::cout << "bounded_buffer_deque_based<std::string> ";
fifo_test(&bb_deque_based_string);
bounded_buffer_list_based<std::string> bb_list_based_string(QUEUE_SIZE);
std::cout << "bounded_buffer_list_based<std::string> ";
fifo_test(&bb_list_based_string);
return 0;
}
/*
//[bounded_buffer_comparison_output
Description: Autorun "J:\Cpp\Misc\Debug\bounded_buffer_comparison.exe"
bounded_buffer<int> 5.15 s
bounded_buffer_space_optimized<int> 5.71 s
bounded_buffer_deque_based<int> 15.57 s
bounded_buffer_list_based<int> 17.33 s
bounded_buffer<std::string> 24.49 s
bounded_buffer_space_optimized<std::string> 28.33 s
bounded_buffer_deque_based<std::string> 29.45 s
bounded_buffer_list_based<std::string> 31.29 s
//] //[bounded_buffer_comparison_output]
*/

View File

@@ -0,0 +1,191 @@
// Copyright 2003-2008 Jan Gaspar.
// Copyright 2013 Paul A. Bristow. Added some Quickbook snippet markers.
// Distributed under the Boost Software License, Version 1.0.
// (See the accompanying file LICENSE_1_0.txt
// or a copy at <http://www.boost.org/LICENSE_1_0.txt>.)
//[circular_buffer_bound_example_1
/*`
This example shows how the `circular_buffer` can be utilized
as an underlying container of the bounded buffer.
*/
#include <boost/circular_buffer.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition.hpp>
#include <boost/thread/thread.hpp>
#include <boost/call_traits.hpp>
#include <boost/bind.hpp>
#include <boost/timer/timer.hpp> // for auto_cpu_timer
template <class T>
class bounded_buffer
{
public:
typedef boost::circular_buffer<T> container_type;
typedef typename container_type::size_type size_type;
typedef typename container_type::value_type value_type;
typedef typename boost::call_traits<value_type>::param_type param_type;
explicit bounded_buffer(size_type capacity) : m_unread(0), m_container(capacity) {}
void push_front(typename boost::call_traits<value_type>::param_type item)
{ // `param_type` represents the "best" way to pass a parameter of type `value_type` to a method.
boost::mutex::scoped_lock lock(m_mutex);
m_not_full.wait(lock, boost::bind(&bounded_buffer<value_type>::is_not_full, this));
m_container.push_front(item);
++m_unread;
lock.unlock();
m_not_empty.notify_one();
}
void pop_back(value_type* pItem) {
boost::mutex::scoped_lock lock(m_mutex);
m_not_empty.wait(lock, boost::bind(&bounded_buffer<value_type>::is_not_empty, this));
*pItem = m_container[--m_unread];
lock.unlock();
m_not_full.notify_one();
}
private:
bounded_buffer(const bounded_buffer&); // Disabled copy constructor.
bounded_buffer& operator = (const bounded_buffer&); // Disabled assign operator.
bool is_not_empty() const { return m_unread > 0; }
bool is_not_full() const { return m_unread < m_container.capacity(); }
size_type m_unread;
container_type m_container;
boost::mutex m_mutex;
boost::condition m_not_empty;
boost::condition m_not_full;
}; //
//] [/circular_buffer_bound_example_1]
const unsigned long queue_size = 1000L;
const unsigned long total_elements = queue_size * 1000L;
//[circular_buffer_bound_example_2]
/*`To demonstrate, create two classes to exercise the buffer.
The producer class fills the buffer with elements.
The consumer class consumes the buffer contents.
*/
template<class Buffer>
class Producer
{
typedef typename Buffer::value_type value_type;
Buffer* m_container;
public:
Producer(Buffer* buffer) : m_container(buffer)
{}
void operator()()
{
for (unsigned long i = 0L; i < total_elements; ++i)
{
m_container->push_front(value_type());
}
}
};
template<class Buffer>
class Consumer
{
typedef typename Buffer::value_type value_type;
Buffer* m_container;
value_type m_item;
public:
Consumer(Buffer* buffer) : m_container(buffer)
{}
void operator()()
{
for (unsigned long i = 0L; i < total_elements; ++i)
{
m_container->pop_back(&m_item);
}
}
};
/*`Create a first-int first-out test of the bound_buffer.
Include a call to boost::progress_timer
[@http://www.boost.org/doc/libs/1_53_0/libs/timer/doc/cpu_timers.html CPU timer]
*/
template<class Buffer>
void fifo_test(Buffer* buffer)
{
// Start of timing.
boost::timer::auto_cpu_timer progress;
// Initialize the buffer with some values before launching producer and consumer threads.
for (unsigned long i = queue_size / 2L; i > 0; --i)
{
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581))
buffer->push_front(Buffer::value_type());
#else
buffer->push_front(BOOST_DEDUCED_TYPENAME Buffer::value_type());
#endif
}
// Construct the threads.
Consumer<Buffer> consumer(buffer);
Producer<Buffer> producer(buffer);
// Start the threads.
boost::thread consume(consumer);
boost::thread produce(producer);
// Wait for completion.
consume.join();
produce.join();
// End of timing.
// destructor of boost::timer::auto_cpu_timer will output the time to std::cout.
}
//] [/circular_buffer_bound_example_2]
int main()
{
//[circular_buffer_bound_example_3]
//`Construct a bounded_buffer to hold the chosen type, here int.
bounded_buffer<int> bb_int(queue_size);
std::cout << "Testing bounded_buffer<int> ";
//`Start the fifo test.
fifo_test(&bb_int);
//` destructor of boost::timer::auto_cpu_timer will output the time to std::cout
//] [/circular_buffer_bound_example_3]
return 0;
} // int main()
/*
//[circular_buffer_bound_output
Description: Autorun "J:\Cpp\Misc\Debug\circular_buffer_bound_example.exe"
Testing bounded_buffer<int> 15.010692s wall, 9.188459s user + 7.207246s system = 16.395705s CPU (109.2%)
//] [/circular_buffer_bound_output]
*/

View File

@@ -0,0 +1,63 @@
// Copyright 2003-2008 Jan Gaspar.
// Copyright 2013 Paul A. Bristow. Added some Quickbook snippet markers.
// Distributed under the Boost Software License, Version 1.0.
// (See the accompanying file LICENSE_1_0.txt
// or a copy at <http://www.boost.org/LICENSE_1_0.txt>.)
//[circular_buffer_example_1
/*`For all examples, we need this include:
*/
#include <boost/circular_buffer.hpp>
//] [/circular_buffer_example_1]
int main()
{
//[circular_buffer_example_2
// Create a circular buffer with a capacity for 3 integers.
boost::circular_buffer<int> cb(3);
// Insert threee elements into the buffer.
cb.push_back(1);
cb.push_back(2);
cb.push_back(3);
int a = cb[0]; // a == 1
int b = cb[1]; // b == 2
int c = cb[2]; // c == 3
// The buffer is full now, so pushing subsequent
// elements will overwrite the front-most elements.
cb.push_back(4); // Overwrite 1 with 4.
cb.push_back(5); // Overwrite 2 with 5.
// The buffer now contains 3, 4 and 5.
a = cb[0]; // a == 3
b = cb[1]; // b == 4
c = cb[2]; // c == 5
// Elements can be popped from either the front or the back.
cb.pop_back(); // 5 is removed.
cb.pop_front(); // 3 is removed.
// Leaving only one element with value = 4.
int d = cb[0]; // d == 4
//] [/circular_buffer_example_2]
return 0;
}
/*
//[circular_buffer_example_output
There is no output from this example.
//] [/circular_buffer_example_output]
*/

View File

@@ -0,0 +1,14 @@
echo off
rem quickbook doxgen auto-index docs template circular_buffer_html_index.bat
rem echo circular_buffer_html_index_%date%_%time:~0,2%_%time:~3,2%.log
rem The DOS time format is assumed 12:34 and the : separator is not used.
set t=%time% /T
set tim=%t:~0,2%%t:~3,2%
rem pick just hours and minutes.
rem time may include leading space, like " 915", so remove space.
set tim=%tim: =%
rem boost-no-inspect
rem cd \boost-trunk/circular_buffer\libs\circular_buffer\example
bjam -a > circular_buffer_examples_%date%_%tim%.log
if not ERRORLEVEL 0 (echo Errorlevel is %ERRORLEVEL%) else (echo OK)
pause

View File

@@ -0,0 +1,40 @@
// Copyright 2003-2008 Jan Gaspar.
// Copyright 2013 Paul A. Bristow. Added some Quickbook snippet markers.
// Distributed under the Boost Software License, Version 1.0.
// (See the accompanying file LICENSE_1_0.txt
// or a copy at <http://www.boost.org/LICENSE_1_0.txt>.)
#undef BOOST_CB_ENABLE_DEBUG
//[circular_buffer_iter_example_1
/*`
*/
#define BOOST_CB_ENABLE_DEBUG 0 // The Debug Support has to be disabled, otherwise the code produces a runtime error.
#include <boost/circular_buffer.hpp>
#include <boost/assert.hpp>
#include <assert.h>
int main(int /*argc*/, char* /*argv*/[])
{
boost::circular_buffer<int> cb(3);
cb.push_back(1);
cb.push_back(2);
cb.push_back(3);
boost::circular_buffer<int>::iterator it = cb.begin();
assert(*it == 1);
cb.push_back(4);
assert(*it == 4); // The iterator still points to the initialized memory.
return 0;
}
//] [/circular_buffer_iter_example_1]

View File

@@ -0,0 +1,64 @@
// Copyright 2003-2008 Jan Gaspar.
// Copyright 2013 Paul A. Bristow. Added some Quickbook snippet markers.
// Distributed under the Boost Software License, Version 1.0.
// (See the accompanying file LICENSE_1_0.txt
// or a copy at <http://www.boost.org/LICENSE_1_0.txt>.)
//[circular_buffer_sum_example_1
/*`This example shows several functions, including summing all valid values.
*/
#include <boost/circular_buffer.hpp>
#include <numeric>
#include <assert.h>
int main(int /*argc*/, char* /*argv*/[])
{
// Create a circular buffer of capacity 3.
boost::circular_buffer<int> cb(3);
assert(cb.capacity() == 3);
// Check is empty.
assert(cb.size() == 0);
assert(cb.empty());
// Insert some elements into the circular buffer.
cb.push_back(1);
cb.push_back(2);
// Assertions to check push_backs have expected effect.
assert(cb[0] == 1);
assert(cb[1] == 2);
assert(!cb.full());
assert(cb.size() == 2);
assert(cb.capacity() == 3);
// Insert some other elements.
cb.push_back(3);
cb.push_back(4);
// Evaluate the sum of all elements.
int sum = std::accumulate(cb.begin(), cb.end(), 0);
// Assertions to check state.
assert(sum == 9);
assert(cb[0] == 2);
assert(cb[1] == 3);
assert(cb[2] == 4);
assert(*cb.begin() == 2);
assert(cb.front() == 2);
assert(cb.back() == 4);
assert(cb.full());
assert(cb.size() == 3);
assert(cb.capacity() == 3);
return 0;
}
//] [/circular_buffer_sum_example_1]
/*
There is no output from this example.
*/

View File

@@ -0,0 +1,42 @@
# Copyright Paul A. Bristow 2013
# Distributed under the Boost Software License, Version 1.0.
# (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
# jamfile.v2 to run all circular_buffer examples.
# bring in the rules for testing.
import testing ;
project
: requirements
<library>/boost/system//boost_system
<library>/boost/thread//boost_thread
#<define>BOOST_ALL_NO_LIB=1
<threading>multi
<toolset>gcc:<cxxflags>-Wno-missing-braces
<toolset>darwin:<cxxflags>-Wno-missing-braces
<toolset>acc:<cxxflags>+W2068,2461,2236,4070
<toolset>intel:<cxxflags>-Qwd264,239
<toolset>msvc:<warnings>all
<toolset>msvc:<asynch-exceptions>on
<toolset>msvc:<define>_CRT_SECURE_NO_DEPRECATE
<toolset>msvc:<define>_SCL_SECURE_NO_DEPRECATE
<toolset>msvc:<define>_SCL_SECURE_NO_WARNINGS
<toolset>msvc:<define>_CRT_SECURE_NO_WARNINGS
<toolset>msvc:<cxxflags>/wd4996
<toolset>msvc:<cxxflags>/wd4512
<toolset>msvc:<cxxflags>/wd4610
<toolset>msvc:<cxxflags>/wd4510
<toolset>msvc:<cxxflags>/wd4127
<toolset>msvc:<cxxflags>/wd4701
<toolset>msvc:<cxxflags>/wd4127
<toolset>msvc:<cxxflags>/wd4305
;
run bounded_buffer_comparison.cpp ;
run circular_buffer_iter_example.cpp ;
run circular_buffer_sum_example.cpp ;
run circular_buffer_bound_example.cpp ../../thread/build//boost_thread ../../timer/build//boost_timer ;

View File

@@ -0,0 +1,25 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="refresh" content="0; URL=../../doc/html/circular_buffer.html">
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>
Redirection
</title>
</head>
<body>
Automatic redirection failed, please go to
<a href="../../doc/html/circular_buffer.html"> ../../doc/html/circular_buffer.html</a>.
<p>
<small>Copyright <20> 2003-2008 Jan Gaspar, 2013 Paul A. Bristow</small>
</p>
<p>
<small>Use, modification, and distribution is subject to the Boost Software License, Version 1.0.<br>
(See accompanying file <code>LICENSE_1_0.txt</code> or copy at <a href=
"http://www.boost.org/LICENSE_1_0.txt">http://www.boost.org/LICENSE_1_0.txt</a>)</small>
</p>
</body>
</html>

View File

@@ -0,0 +1,14 @@
{
"key": "circular_buffer",
"name": "Circular Buffer",
"authors": [
"Jan Gaspar"
],
"description": "A STL compliant container also known as ring or cyclic buffer.",
"category": [
"Containers"
],
"maintainers": [
"Jan Gaspar <jano_gaspar -at- yahoo.com>"
]
}

View File

@@ -0,0 +1,32 @@
# Boost circular_buffer test Jamfile.
#
# Copyright (c) 2003-2008 Jan Gaspar
#
# Distributed under the Boost Software License, Version 1.0. (See
# accompanying file LICENSE_1_0.txt or copy at
# http://www.boost.org/LICENSE_1_0.txt)
# Added warning suppression Paul A. Bristow 25 Nov 2008
# Bring in rules for testing.
import testing ;
project
: requirements
<toolset>msvc:<warnings>all
<toolset>msvc:<asynch-exceptions>on
<toolset>msvc:<define>_SCL_SECURE_NO_WARNINGS
<toolset>msvc:<cxxflags>/wd4996 # 'function': was declared deprecated
<toolset>msvc:<cxxflags>/wd4244 # conversion from 'int' to 'unsigned short', possible loss of data
# in date-time
;
test-suite "circular_buffer"
: [ run base_test.cpp : : : <threading>single : ]
[ run space_optimized_test.cpp : : : <threading>single : ]
[ run base_test.cpp : : : <threading>single <define>"BOOST_CB_ENABLE_DEBUG=1" : base_test_dbg ]
[ run space_optimized_test.cpp : : : <threading>single <define>"BOOST_CB_ENABLE_DEBUG=1" : space_optimized_test_dbg ]
[ run soft_iterator_invalidation.cpp : : : <threading>single : ]
[ run constant_erase_test.cpp : : : <threading>single : ]
[ compile bounded_buffer_comparison.cpp : <threading>multi : ]
;

View File

@@ -0,0 +1,865 @@
// Test of the base circular buffer container.
// Copyright (c) 2003-2008 Jan Gaspar
// Copyright (c) 2013 Antony Polukhin
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include "test.hpp"
#define CB_CONTAINER circular_buffer
#include "common.ipp"
void iterator_constructor_and_assign_test() {
circular_buffer<MyInteger> cb(4, 3);
circular_buffer<MyInteger>::iterator it = cb.begin();
circular_buffer<MyInteger>::iterator itCopy;
itCopy = it;
it = it;
circular_buffer<MyInteger>::const_iterator cit;
cit = it;
circular_buffer<MyInteger>::const_iterator end1 = cb.end();
circular_buffer<MyInteger>::const_iterator end2 = end1;
BOOST_CHECK(itCopy == it);
BOOST_CHECK(cit == it);
BOOST_CHECK(end1 == end2);
BOOST_CHECK(it != end1);
BOOST_CHECK(cit != end2);
}
void iterator_reference_test() {
circular_buffer<Dummy> cb(3, Dummy());
circular_buffer<Dummy>::iterator it = cb.begin();
circular_buffer<Dummy>::const_iterator cit = cb.begin() + 1;
BOOST_CHECK((*it).m_n == Dummy::eVar);
BOOST_CHECK((*it).fnc() == Dummy::eFnc);
BOOST_CHECK((*cit).const_fnc() == Dummy::eConst);
BOOST_CHECK((*it).virtual_fnc() == Dummy::eVirtual);
BOOST_CHECK(it->m_n == Dummy::eVar);
BOOST_CHECK(it->fnc() == Dummy::eFnc);
BOOST_CHECK(cit->const_fnc() == Dummy::eConst);
BOOST_CHECK(it->virtual_fnc() == Dummy::eVirtual);
}
void iterator_difference_test() {
circular_buffer<MyInteger> cb(5, 1);
cb.push_back(2);
circular_buffer<MyInteger>::iterator it1 = cb.begin() + 2;
circular_buffer<MyInteger>::iterator it2 = cb.begin() + 3;
circular_buffer<MyInteger>::const_iterator begin = cb.begin();
circular_buffer<MyInteger>::iterator end = cb.end();
BOOST_CHECK(begin - begin == 0);
BOOST_CHECK(end - cb.begin() == 5);
BOOST_CHECK(end - end == 0);
BOOST_CHECK(begin - cb.end() == -5);
BOOST_CHECK(it1 - cb.begin() == 2);
BOOST_CHECK(it1 - begin == 2);
BOOST_CHECK(end - it1 == 3);
BOOST_CHECK(it2 - it1 == 1);
BOOST_CHECK(it1 - it2 == -1);
BOOST_CHECK(it2 - it2 == 0);
}
void iterator_increment_test() {
circular_buffer<MyInteger> cb(10, 1);
cb.push_back(2);
circular_buffer<MyInteger>::iterator it1 = cb.begin();
circular_buffer<MyInteger>::iterator it2 = cb.begin() + 5;
circular_buffer<MyInteger>::iterator it3 = cb.begin() + 9;
it1++;
it2++;
++it3;
BOOST_CHECK(it1 == cb.begin() + 1);
BOOST_CHECK(it2 == cb.begin() + 6);
BOOST_CHECK(it3 == cb.end());
}
void iterator_decrement_test() {
circular_buffer<MyInteger> cb(10, 1);
cb.push_back(2);
circular_buffer<MyInteger>::iterator it1= cb.end();
circular_buffer<MyInteger>::iterator it2= cb.end() - 5;
circular_buffer<MyInteger>::iterator it3= cb.end() - 9;
--it1;
it2--;
--it3;
BOOST_CHECK(it1 == cb.end() - 1);
BOOST_CHECK(it2 == cb.end() - 6);
BOOST_CHECK(it3 == cb.begin());
}
void iterator_addition_test() {
circular_buffer<MyInteger> cb(10, 1);
cb.push_back(2);
cb.push_back(2);
circular_buffer<MyInteger>::iterator it1 = cb.begin() + 2;
circular_buffer<MyInteger>::iterator it2 = cb.end();
circular_buffer<MyInteger>::iterator it3 = cb.begin() + 5;
circular_buffer<MyInteger>::iterator it4 = cb.begin() + 9;
it1 += 3;
it2 += 0;
it3 += 5;
it4 += -2;
BOOST_CHECK(it1 == 5 + cb.begin());
BOOST_CHECK(it2 == cb.end());
BOOST_CHECK(it3 == cb.end());
BOOST_CHECK(it4 + 3 == cb.end());
BOOST_CHECK((-3) + it4 == cb.begin() + 4);
BOOST_CHECK(cb.begin() + 0 == cb.begin());
}
void iterator_subtraction_test() {
circular_buffer<MyInteger> cb(10, 1);
cb.push_back(2);
cb.push_back(2);
cb.push_back(2);
circular_buffer<MyInteger>::iterator it1 = cb.begin();
circular_buffer<MyInteger>::iterator it2 = cb.end();
circular_buffer<MyInteger>::iterator it3 = cb.end() - 5;
circular_buffer<MyInteger>::iterator it4 = cb.begin() + 7;
it1 -= -2;
it2 -= 0;
it3 -= 5;
BOOST_CHECK(it1 == cb.begin() + 2);
BOOST_CHECK(it2 == cb.end());
BOOST_CHECK(it3 == cb.begin());
BOOST_CHECK(it4 - 7 == cb.begin());
BOOST_CHECK(it4 - (-3) == cb.end());
BOOST_CHECK(cb.begin() - 0 == cb.begin());
}
void iterator_element_access_test() {
circular_buffer<MyInteger> cb(10);
cb.push_back(1);
cb.push_back(2);
cb.push_back(3);
cb.push_back(4);
cb.push_back(5);
cb.push_back(6);
circular_buffer<MyInteger>::iterator it = cb.begin() + 1;
BOOST_CHECK(it[0] == 2);
BOOST_CHECK(it[-1] == 1);
BOOST_CHECK(it[2] == 4);
}
void iterator_comparison_test() {
circular_buffer<MyInteger> cb(5, 1);
cb.push_back(2);
circular_buffer<MyInteger>::iterator it = cb.begin() + 2;
circular_buffer<MyInteger>::const_iterator begin = cb.begin();
circular_buffer<MyInteger>::iterator end = cb.end();
BOOST_CHECK(begin == begin);
BOOST_CHECK(end > cb.begin());
BOOST_CHECK(begin < end);
BOOST_CHECK(end > begin);
BOOST_CHECK(end == end);
BOOST_CHECK(begin < cb.end());
BOOST_CHECK(!(begin + 1 > cb.end()));
BOOST_CHECK(it > cb.begin());
BOOST_CHECK(end > it);
BOOST_CHECK(begin >= begin);
BOOST_CHECK(end >= cb.begin());
BOOST_CHECK(end <= end);
BOOST_CHECK(begin <= cb.end());
BOOST_CHECK(it >= cb.begin());
BOOST_CHECK(end >= it);
BOOST_CHECK(!(begin + 4 < begin + 4));
BOOST_CHECK(begin + 4 < begin + 5);
BOOST_CHECK(!(begin + 5 < begin + 4));
BOOST_CHECK(it < end - 1);
BOOST_CHECK(!(end - 1 < it));
}
void iterator_invalidation_test() {
#if BOOST_CB_ENABLE_DEBUG
circular_buffer<MyInteger>::iterator it1;
circular_buffer<MyInteger>::const_iterator it2;
circular_buffer<MyInteger>::iterator it3;
circular_buffer<MyInteger>::const_iterator it4;
circular_buffer<MyInteger>::const_iterator it5;
circular_buffer<MyInteger>::const_iterator it6;
BOOST_CHECK(it1.is_valid(0));
BOOST_CHECK(it2.is_valid(0));
BOOST_CHECK(it3.is_valid(0));
BOOST_CHECK(it4.is_valid(0));
BOOST_CHECK(it5.is_valid(0));
BOOST_CHECK(it6.is_valid(0));
{
circular_buffer<MyInteger> cb(5, 0);
const circular_buffer<MyInteger> ccb(5, 0);
it1 = cb.begin();
it2 = ccb.begin();
it3 = cb.end();
it4 = it1;
it5 = it2;
it6 = it1;
BOOST_CHECK(it1.is_valid(&cb));
BOOST_CHECK(it2.is_valid(&ccb));
BOOST_CHECK(it3.is_valid(&cb));
BOOST_CHECK(it4.is_valid(&cb));
BOOST_CHECK(it5.is_valid(&ccb));
BOOST_CHECK(it6.is_valid(&cb));
}
BOOST_CHECK(it1.is_valid(0));
BOOST_CHECK(it2.is_valid(0));
BOOST_CHECK(it3.is_valid(0));
BOOST_CHECK(it4.is_valid(0));
BOOST_CHECK(it5.is_valid(0));
BOOST_CHECK(it6.is_valid(0));
circular_buffer<MyInteger> cb(10, 0);
it1 = cb.end();
cb.clear();
BOOST_CHECK(it1.is_valid(&cb));
cb.push_back(1);
cb.push_back(2);
cb.push_back(3);
int i = 0;
for (it2 = cb.begin(); it2 != it1; it2++, i++);
BOOST_CHECK(i == 3);
circular_buffer<MyInteger> cb1(10, 0);
circular_buffer<MyInteger> cb2(20, 0);
it1 = cb1.end();
it2 = cb2.begin();
BOOST_CHECK(it1.is_valid(&cb1));
BOOST_CHECK(it2.is_valid(&cb2));
cb1.swap(cb2);
BOOST_CHECK(!it1.is_valid(&cb1));
BOOST_CHECK(!it2.is_valid(&cb2));
it1 = cb1.begin() + 3;
it2 = cb1.begin();
cb1.push_back(1);
BOOST_CHECK(it1.is_valid(&cb1));
BOOST_CHECK(!it2.is_valid(&cb1));
BOOST_CHECK(*it2.m_it == 1);
circular_buffer<MyInteger> cb3(5);
cb3.push_back(1);
cb3.push_back(2);
cb3.push_back(3);
cb3.push_back(4);
cb3.push_back(5);
it1 = cb3.begin() + 2;
it2 = cb3.begin();
cb3.insert(cb3.begin() + 3, 6);
BOOST_CHECK(it1.is_valid(&cb3));
BOOST_CHECK(!it2.is_valid(&cb3));
BOOST_CHECK(*it2.m_it == 5);
it1 = cb3.begin() + 3;
it2 = cb3.end() - 1;
cb3.push_front(7);
BOOST_CHECK(it1.is_valid(&cb3));
BOOST_CHECK(!it2.is_valid(&cb3));
BOOST_CHECK(*it2.m_it == 7);
circular_buffer<MyInteger> cb4(5);
cb4.push_back(1);
cb4.push_back(2);
cb4.push_back(3);
cb4.push_back(4);
cb4.push_back(5);
it1 = cb4.begin() + 3;
it2 = cb4.begin();
cb4.rinsert(cb4.begin() + 2, 6);
BOOST_CHECK(it1.is_valid(&cb4));
BOOST_CHECK(!it2.is_valid(&cb4));
BOOST_CHECK(*it2.m_it == 2);
it1 = cb1.begin() + 5;
it2 = cb1.end() - 1;
cb1.pop_back();
BOOST_CHECK(it1.is_valid(&cb1));
BOOST_CHECK(!it2.is_valid(&cb1));
it1 = cb1.begin() + 5;
it2 = cb1.begin();
cb1.pop_front();
BOOST_CHECK(it1.is_valid(&cb1));
BOOST_CHECK(!it2.is_valid(&cb1));
circular_buffer<MyInteger> cb5(20, 0);
it1 = cb5.begin() + 5;
it2 = it3 = cb5.begin() + 15;
cb5.erase(cb5.begin() + 10);
BOOST_CHECK(it1.is_valid(&cb5));
BOOST_CHECK(!it2.is_valid(&cb5));
BOOST_CHECK(!it3.is_valid(&cb5));
it1 = cb5.begin() + 1;
it2 = it3 = cb5.begin() + 8;
cb5.erase(cb5.begin() + 3, cb5.begin() + 7);
BOOST_CHECK(it1.is_valid(&cb5));
BOOST_CHECK(!it2.is_valid(&cb5));
BOOST_CHECK(!it3.is_valid(&cb5));
circular_buffer<MyInteger> cb6(20, 0);
it4 = it1 = cb6.begin() + 5;
it2 = cb6.begin() + 15;
cb6.rerase(cb6.begin() + 10);
BOOST_CHECK(!it1.is_valid(&cb6));
BOOST_CHECK(!it4.is_valid(&cb6));
BOOST_CHECK(it2.is_valid(&cb6));
it4 = it1 = cb6.begin() + 1;
it2 = cb6.begin() + 8;
cb6.rerase(cb6.begin() + 3, cb6.begin() + 7);
BOOST_CHECK(!it1.is_valid(&cb6));
BOOST_CHECK(!it4.is_valid(&cb6));
BOOST_CHECK(it2.is_valid(&cb6));
circular_buffer<MyInteger> cb7(10, 1);
cb7.push_back(2);
cb7.push_back(3);
cb7.push_back(4);
it1 = cb7.end();
it2 = cb7.begin();
it3 = cb7.begin() + 6;
cb7.linearize();
BOOST_CHECK(it1.is_valid(&cb7));
BOOST_CHECK(!it2.is_valid(&cb7));
BOOST_CHECK(!it3.is_valid(&cb7));
it1 = cb7.end();
it2 = cb7.begin();
it3 = cb7.begin() + 6;
cb7.linearize();
BOOST_CHECK(it1.is_valid(&cb7));
BOOST_CHECK(it2.is_valid(&cb7));
BOOST_CHECK(it3.is_valid(&cb7));
cb7.push_back(5);
cb7.push_back(6);
it1 = cb7.end();
it2 = cb7.begin();
it3 = cb7.begin() + 6;
cb7.set_capacity(10);
BOOST_CHECK(it1.is_valid(&cb7));
BOOST_CHECK(it2.is_valid(&cb7));
BOOST_CHECK(it3.is_valid(&cb7));
cb7.set_capacity(20);
BOOST_CHECK(it1.is_valid(&cb7));
BOOST_CHECK(!it2.is_valid(&cb7));
BOOST_CHECK(!it3.is_valid(&cb7));
cb7.push_back(7);
it1 = cb7.end();
it2 = cb7.begin();
it3 = cb7.begin() + 6;
cb7.set_capacity(10);
BOOST_CHECK(it1.is_valid(&cb7));
BOOST_CHECK(!it2.is_valid(&cb7));
BOOST_CHECK(!it3.is_valid(&cb7));
cb7.push_back(8);
cb7.push_back(9);
it1 = cb7.end();
it2 = cb7.begin();
it3 = cb7.begin() + 6;
cb7.rset_capacity(10);
BOOST_CHECK(it1.is_valid(&cb7));
BOOST_CHECK(it2.is_valid(&cb7));
BOOST_CHECK(it3.is_valid(&cb7));
cb7.rset_capacity(20);
BOOST_CHECK(it1.is_valid(&cb7));
BOOST_CHECK(!it2.is_valid(&cb7));
BOOST_CHECK(!it3.is_valid(&cb7));
cb7.push_back(10);
it1 = cb7.end();
it2 = cb7.begin();
it3 = cb7.begin() + 6;
cb7.rset_capacity(10);
BOOST_CHECK(it1.is_valid(&cb7));
BOOST_CHECK(!it2.is_valid(&cb7));
BOOST_CHECK(!it3.is_valid(&cb7));
circular_buffer<MyInteger> cb8(10, 1);
cb8.push_back(2);
cb8.push_back(3);
it1 = cb8.end();
it2 = cb8.begin();
it3 = cb8.begin() + 6;
cb8.resize(10);
BOOST_CHECK(it1.is_valid(&cb8));
BOOST_CHECK(it2.is_valid(&cb8));
BOOST_CHECK(it3.is_valid(&cb8));
cb8.resize(20);
BOOST_CHECK(it1.is_valid(&cb8));
BOOST_CHECK(!it2.is_valid(&cb8));
BOOST_CHECK(!it3.is_valid(&cb8));
cb8.push_back(4);
it1 = cb8.end();
it2 = cb8.begin();
it3 = cb8.begin() + 6;
it4 = cb8.begin() + 12;
cb8.resize(10);
BOOST_CHECK(it1.is_valid(&cb8));
BOOST_CHECK(it2.is_valid(&cb8));
BOOST_CHECK(it3.is_valid(&cb8));
BOOST_CHECK(!it4.is_valid(&cb8));
cb8.set_capacity(10);
cb8.push_back(5);
cb8.push_back(6);
it1 = cb8.end();
it2 = cb8.begin();
it3 = cb8.begin() + 6;
cb8.rresize(10);
BOOST_CHECK(it1.is_valid(&cb8));
BOOST_CHECK(it2.is_valid(&cb8));
BOOST_CHECK(it3.is_valid(&cb8));
cb8.rresize(20);
BOOST_CHECK(it1.is_valid(&cb8));
BOOST_CHECK(!it2.is_valid(&cb8));
BOOST_CHECK(!it3.is_valid(&cb8));
cb8.push_back(7);
it1 = cb8.end();
it2 = cb8.begin();
it3 = cb8.begin() + 6;
it4 = cb8.begin() + 12;
cb8.rresize(10);
BOOST_CHECK(it1.is_valid(&cb8));
BOOST_CHECK(!it2.is_valid(&cb8));
BOOST_CHECK(!it3.is_valid(&cb8));
BOOST_CHECK(it4.is_valid(&cb8));
circular_buffer<MyInteger> cb9(15, 1);
it1 = cb9.end();
it2 = cb9.begin();
it3 = cb9.begin() + 6;
it4 = cb9.begin() + 12;
cb9 = cb8;
BOOST_CHECK(it1.is_valid(&cb9));
BOOST_CHECK(!it2.is_valid(&cb9));
BOOST_CHECK(!it3.is_valid(&cb9));
BOOST_CHECK(!it4.is_valid(&cb9));
circular_buffer<MyInteger> cb10(10, 1);
it1 = cb10.end();
it2 = cb10.begin();
it3 = cb10.begin() + 3;
it4 = cb10.begin() + 7;
cb10.assign(5, 2);
BOOST_CHECK(it1.is_valid(&cb10));
BOOST_CHECK(!it2.is_valid(&cb10));
BOOST_CHECK(!it3.is_valid(&cb10));
BOOST_CHECK(!it4.is_valid(&cb10));
circular_buffer<MyInteger> cb11(10, 1);
it1 = cb11.end();
it2 = cb11.begin();
it3 = cb11.begin() + 3;
it4 = cb11.begin() + 7;
cb11.assign(15, 5, 2);
BOOST_CHECK(it1.is_valid(&cb11));
BOOST_CHECK(!it2.is_valid(&cb11));
BOOST_CHECK(!it3.is_valid(&cb11));
BOOST_CHECK(!it4.is_valid(&cb11));
circular_buffer<MyInteger> cb12(10, 1);
it1 = cb12.end();
it2 = cb12.begin();
it3 = cb12.begin() + 3;
it4 = cb12.begin() + 7;
cb12.assign(cb11.begin(), cb11.end());
BOOST_CHECK(it1.is_valid(&cb12));
BOOST_CHECK(!it2.is_valid(&cb12));
BOOST_CHECK(!it3.is_valid(&cb12));
BOOST_CHECK(!it4.is_valid(&cb12));
circular_buffer<MyInteger> cb13(10, 1);
it1 = cb13.end();
it2 = cb13.begin();
it3 = cb13.begin() + 3;
it4 = cb13.begin() + 7;
cb13.assign(15, cb11.begin(), cb11.end());
BOOST_CHECK(it1.is_valid(&cb13));
BOOST_CHECK(!it2.is_valid(&cb13));
BOOST_CHECK(!it3.is_valid(&cb13));
BOOST_CHECK(!it4.is_valid(&cb13));
circular_buffer<MyInteger> cb14(10);
cb14.push_back(1);
cb14.push_back(2);
cb14.push_back(3);
cb14.push_back(4);
cb14.push_back(5);
cb14.push_back(6);
cb14.push_back(7);
it1 = cb14.end();
it2 = cb14.begin() + 2;
it3 = cb14.begin() + 1;
it4 = cb14.begin() + 5;
cb14.rotate(it2);
BOOST_CHECK(it1.is_valid(&cb14));
BOOST_CHECK(it2.is_valid(&cb14));
BOOST_CHECK(!it3.is_valid(&cb14));
BOOST_CHECK(it4.is_valid(&cb14));
circular_buffer<MyInteger> cb15(7);
cb15.push_back(1);
cb15.push_back(2);
cb15.push_back(3);
cb15.push_back(4);
cb15.push_back(5);
cb15.push_back(6);
cb15.push_back(7);
cb15.push_back(8);
cb15.push_back(9);
it1 = cb15.end();
it2 = cb15.begin() + 2;
it3 = cb15.begin() + 1;
it4 = cb15.begin() + 5;
cb15.rotate(it3);
BOOST_CHECK(it1.is_valid(&cb15));
BOOST_CHECK(it2.is_valid(&cb15));
BOOST_CHECK(it3.is_valid(&cb15));
BOOST_CHECK(it4.is_valid(&cb15));
circular_buffer<MyInteger> cb16(10);
cb16.push_back(1);
cb16.push_back(2);
cb16.push_back(3);
cb16.push_back(4);
cb16.push_back(5);
cb16.push_back(6);
cb16.push_back(7);
it1 = cb16.end();
it2 = cb16.begin() + 6;
it3 = cb16.begin();
it4 = cb16.begin() + 5;
cb16.rotate(it4);
BOOST_CHECK(it1.is_valid(&cb16));
BOOST_CHECK(!it2.is_valid(&cb16));
BOOST_CHECK(it3.is_valid(&cb16));
BOOST_CHECK(!it4.is_valid(&cb16));
#endif // #if BOOST_CB_ENABLE_DEBUG
}
// basic exception safety test (it is useful to use any memory-leak detection tool)
void exception_safety_test() {
#if !defined(BOOST_NO_EXCEPTIONS)
circular_buffer<MyInteger> cb1(3, 5);
MyInteger::set_exception_trigger(3);
BOOST_CHECK_THROW(cb1.set_capacity(5), std::exception);
BOOST_CHECK(cb1.capacity() == 3);
MyInteger::set_exception_trigger(3);
BOOST_CHECK_THROW(cb1.rset_capacity(5), std::exception);
BOOST_CHECK(cb1.capacity() == 3);
generic_test(cb1);
MyInteger::set_exception_trigger(3);
BOOST_CHECK_THROW(circular_buffer<MyInteger> cb2(5, 10), std::exception);
circular_buffer<MyInteger> cb3(5, 10);
MyInteger::set_exception_trigger(3);
BOOST_CHECK_THROW(circular_buffer<MyInteger> cb4(cb3), std::exception);
vector<MyInteger> v(5, MyInteger(10));
MyInteger::set_exception_trigger(3);
BOOST_CHECK_THROW(circular_buffer<MyInteger> cb5(8, v.begin(), v.end()), std::exception);
circular_buffer<MyInteger> cb6(5, 10);
circular_buffer<MyInteger> cb7(8, 3);
MyInteger::set_exception_trigger(3);
BOOST_CHECK_THROW(cb7 = cb6, std::exception);
BOOST_CHECK(cb7.size() == 8);
BOOST_CHECK(cb7.capacity() == 8);
BOOST_CHECK(cb7[0] == 3);
BOOST_CHECK(cb7[7] == 3);
generic_test(cb7);
circular_buffer<MyInteger> cb8(5, 10);
MyInteger::set_exception_trigger(2);
BOOST_CHECK_THROW(cb8.push_front(1), std::exception);
circular_buffer<MyInteger> cb9(5);
cb9.push_back(1);
cb9.push_back(2);
cb9.push_back(3);
MyInteger::set_exception_trigger(3);
BOOST_CHECK_THROW(cb9.insert(cb9.begin() + 1, 4), std::exception);
circular_buffer<MyInteger> cb10(5);
cb10.push_back(1);
cb10.push_back(2);
cb10.push_back(3);
MyInteger::set_exception_trigger(3);
BOOST_CHECK_THROW(cb10.rinsert(cb10.begin() + 1, 4), std::exception);
circular_buffer<MyInteger> cb11(5);
cb11.push_back(1);
cb11.push_back(2);
MyInteger::set_exception_trigger(2);
BOOST_CHECK_THROW(cb11.rinsert(cb11.begin(), 1), std::exception);
circular_buffer<MyInteger> cb12(5, 1);
MyInteger::set_exception_trigger(3);
BOOST_CHECK_THROW(cb12.assign(4, 2), std::exception);
circular_buffer<MyInteger> cb13(5, 1);
MyInteger::set_exception_trigger(3);
BOOST_CHECK_THROW(cb13.assign(6, 2), std::exception);
circular_buffer<MyInteger> cb14(5);
cb14.push_back(1);
cb14.push_back(2);
MyInteger::set_exception_trigger(3);
BOOST_CHECK_THROW(cb14.insert(cb14.begin(), 10, 3), std::exception);
circular_buffer<MyInteger> cb15(5);
cb15.push_back(1);
cb15.push_back(2);
MyInteger::set_exception_trigger(3);
BOOST_CHECK_THROW(cb15.insert(cb15.end(), 10, 3), std::exception);
circular_buffer<MyInteger> cb16(5);
cb16.push_back(1);
cb16.push_back(2);
MyInteger::set_exception_trigger(3);
BOOST_CHECK_THROW(cb16.rinsert(cb16.begin(), 10, 3), std::exception);
circular_buffer<MyInteger> cb17(5);
cb17.push_back(1);
cb17.push_back(2);
MyInteger::set_exception_trigger(3);
BOOST_CHECK_THROW(cb17.rinsert(cb17.end(), 10, 3), std::exception);
circular_buffer<MyInteger> cb18(5, 0);
cb18.push_back(1);
cb18.push_back(2);
cb18.pop_front();
MyInteger::set_exception_trigger(4);
BOOST_CHECK_THROW(cb18.linearize(), std::exception);
circular_buffer<MyInteger> cb19(5, 0);
cb19.push_back(1);
cb19.push_back(2);
MyInteger::set_exception_trigger(5);
BOOST_CHECK_THROW(cb19.linearize(), std::exception);
circular_buffer<MyInteger> cb20(5, 0);
cb20.push_back(1);
cb20.push_back(2);
MyInteger::set_exception_trigger(6);
BOOST_CHECK_THROW(cb20.linearize(), std::exception);
circular_buffer<MyInteger> cb21(5);
cb21.push_back(1);
cb21.push_back(2);
cb21.push_back(3);
MyInteger::set_exception_trigger(2);
BOOST_CHECK_THROW(cb21.insert(cb21.begin() + 1, 4), std::exception);
circular_buffer<MyInteger> cb22(5);
cb22.push_back(1);
cb22.push_back(2);
cb22.push_back(3);
MyInteger::set_exception_trigger(2);
BOOST_CHECK_THROW(cb22.insert(cb22.end(), 4), std::exception);
circular_buffer<MyInteger> cb23(5, 0);
MyInteger::set_exception_trigger(2);
BOOST_CHECK_THROW(cb23.insert(cb23.begin() + 1, 4), std::exception);
circular_buffer<MyInteger> cb24(5);
cb24.push_back(1);
cb24.push_back(2);
cb24.push_back(3);
MyInteger::set_exception_trigger(2);
BOOST_CHECK_THROW(cb24.rinsert(cb24.begin() + 1, 4), std::exception);
circular_buffer<MyInteger> cb25(5, 0);
MyInteger::set_exception_trigger(2);
BOOST_CHECK_THROW(cb25.rinsert(cb25.begin() + 3, 4), std::exception);
circular_buffer<MyInteger> cb26(5);
cb26.push_back(1);
cb26.push_back(2);
MyInteger::set_exception_trigger(5);
BOOST_CHECK_THROW(cb26.insert(cb26.begin(), 10, 3), std::exception);
circular_buffer<MyInteger> cb27(5);
cb27.push_back(1);
cb27.push_back(2);
MyInteger::set_exception_trigger(5);
BOOST_CHECK_THROW(cb27.insert(cb27.end(), 10, 3), std::exception);
circular_buffer<MyInteger> cb28(5);
cb28.push_back(1);
cb28.push_back(2);
MyInteger::set_exception_trigger(5);
BOOST_CHECK_THROW(cb28.rinsert(cb28.begin(), 10, 3), std::exception);
circular_buffer<MyInteger> cb29(5);
cb29.push_back(1);
cb29.push_back(2);
MyInteger::set_exception_trigger(5);
BOOST_CHECK_THROW(cb29.rinsert(cb29.end(), 10, 3), std::exception);
circular_buffer<MyInteger> cb30(10);
cb30.push_back(1);
cb30.push_back(2);
cb30.push_back(3);
MyInteger::set_exception_trigger(2);
BOOST_CHECK_THROW(cb30.rinsert(cb30.begin(), 10, 3), std::exception);
#endif // #if !defined(BOOST_NO_EXCEPTIONS)
}
void move_container_values_except() {
move_container_values_impl<noncopyable_movable_except_t>();
}
template <class T>
void move_container_values_resetting_impl() {
typedef T noncopyable_movable_test_t;
CB_CONTAINER<noncopyable_movable_test_t> cb1(1);
noncopyable_movable_test_t var;
cb1.push_back();
cb1.push_back(boost::move(var));
BOOST_CHECK(!cb1.back().is_moved());
BOOST_CHECK(var.is_moved());
BOOST_CHECK(cb1.size() == 1);
var = boost::move(cb1.back());
BOOST_CHECK(cb1.back().is_moved());
cb1.push_front(boost::move(var));
BOOST_CHECK(!cb1.front().is_moved());
BOOST_CHECK(var.is_moved());
BOOST_CHECK(cb1.size() == 1);
var = boost::move(cb1.back());
BOOST_CHECK(cb1.back().is_moved());
cb1.push_back();
BOOST_CHECK(!cb1.back().is_moved());
BOOST_CHECK(cb1.size() == 1);
var = boost::move(cb1.back());
BOOST_CHECK(cb1.back().is_moved());
cb1.push_front();
BOOST_CHECK(!cb1.front().is_moved());
BOOST_CHECK(cb1.size() == 1);
var = boost::move(cb1.back());
BOOST_CHECK(cb1.back().is_moved());
cb1.insert(cb1.begin());
// If the circular_buffer is full and the pos points to begin(),
// then the item will not be inserted.
BOOST_CHECK(cb1.front().is_moved());
BOOST_CHECK(cb1.size() == 1);
var = boost::move(cb1.back());
BOOST_CHECK(cb1.back().is_moved());
cb1.insert(cb1.begin(), boost::move(var));
// If the circular_buffer is full and the pos points to begin(),
// then the item will not be inserted.
BOOST_CHECK(cb1.front().is_moved());
BOOST_CHECK(cb1.size() == 1);
var = boost::move(cb1.back());
BOOST_CHECK(cb1.back().is_moved());
cb1.rinsert(cb1.begin());
BOOST_CHECK(!cb1.back().is_moved());
BOOST_CHECK(cb1.size() == 1);
var = boost::move(cb1.back());
BOOST_CHECK(cb1.back().is_moved());
var.reinit();
cb1.rinsert(cb1.begin(), boost::move(var));
BOOST_CHECK(!cb1.back().is_moved());
BOOST_CHECK(cb1.size() == 1);
var = boost::move(cb1.back());
BOOST_CHECK(cb1.back().is_moved());
cb1.rinsert(cb1.end());
BOOST_CHECK(cb1.back().is_moved());
BOOST_CHECK(cb1.size() == 1);
var = boost::move(cb1.back());
BOOST_CHECK(cb1.back().is_moved());
var.reinit();
cb1.rinsert(cb1.end(), boost::move(var));
BOOST_CHECK(cb1.back().is_moved());
BOOST_CHECK(cb1.size() == 1);
var = boost::move(cb1.back());
BOOST_CHECK(cb1.back().is_moved());
cb1.push_back();
BOOST_CHECK(!cb1[0].is_moved());
const int val = cb1[0].value();
cb1.linearize();
BOOST_CHECK(!cb1[0].is_moved());
BOOST_CHECK(cb1[0].value() == val);
cb1.rotate(cb1.begin());
BOOST_CHECK(!cb1[0].is_moved());
BOOST_CHECK(cb1[0].value() == val);
}
void move_container_values_resetting_except() {
move_container_values_resetting_impl<noncopyable_movable_except_t>();
}
void move_container_values_resetting_noexcept() {
move_container_values_resetting_impl<noncopyable_movable_noexcept_t>();
}
// test main
test_suite* init_unit_test_suite(int /*argc*/, char* /*argv*/[]) {
test_suite* tests = BOOST_TEST_SUITE("Unit tests for the circular_buffer.");
add_common_tests(tests);
tests->add(BOOST_TEST_CASE(&iterator_constructor_and_assign_test));
tests->add(BOOST_TEST_CASE(&iterator_reference_test));
tests->add(BOOST_TEST_CASE(&iterator_difference_test));
tests->add(BOOST_TEST_CASE(&iterator_increment_test));
tests->add(BOOST_TEST_CASE(&iterator_decrement_test));
tests->add(BOOST_TEST_CASE(&iterator_addition_test));
tests->add(BOOST_TEST_CASE(&iterator_subtraction_test));
tests->add(BOOST_TEST_CASE(&iterator_element_access_test));
tests->add(BOOST_TEST_CASE(&iterator_comparison_test));
tests->add(BOOST_TEST_CASE(&iterator_invalidation_test));
tests->add(BOOST_TEST_CASE(&exception_safety_test));
tests->add(BOOST_TEST_CASE(&move_container_values_except));
tests->add(BOOST_TEST_CASE(&move_container_values_resetting_except));
tests->add(BOOST_TEST_CASE(&move_container_values_resetting_noexcept));
return tests;
}

View File

@@ -0,0 +1,316 @@
// Comparison of bounded buffers based on different containers.
// Copyright (c) 2003-2008 Jan Gaspar
// Copyright 2013 Paul A. Bristow. Added some Quickbook snippet markers.
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <boost/circular_buffer.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition_variable.hpp>
#include <boost/thread/thread.hpp>
#include <boost/call_traits.hpp>
#include <boost/progress.hpp>
#include <boost/bind.hpp>
#include <deque>
#include <list>
#include <string>
#include <iostream>
const unsigned long QUEUE_SIZE = 1000L;
const unsigned long TOTAL_ELEMENTS = QUEUE_SIZE * 1000L;
template <class T>
class bounded_buffer {
public:
typedef boost::circular_buffer<T> container_type;
typedef typename container_type::size_type size_type;
typedef typename container_type::value_type value_type;
typedef typename boost::call_traits<value_type>::param_type param_type;
explicit bounded_buffer(size_type capacity) : m_unread(0), m_container(capacity) {}
void push_front(param_type item) {
boost::unique_lock<boost::mutex> lock(m_mutex);
m_not_full.wait(lock, boost::bind(&bounded_buffer<value_type>::is_not_full, this));
m_container.push_front(item);
++m_unread;
lock.unlock();
m_not_empty.notify_one();
}
void pop_back(value_type* pItem) {
boost::unique_lock<boost::mutex> lock(m_mutex);
m_not_empty.wait(lock, boost::bind(&bounded_buffer<value_type>::is_not_empty, this));
*pItem = m_container[--m_unread];
lock.unlock();
m_not_full.notify_one();
}
private:
bounded_buffer(const bounded_buffer&); // Disabled copy constructor
bounded_buffer& operator = (const bounded_buffer&); // Disabled assign operator
bool is_not_empty() const { return m_unread > 0; }
bool is_not_full() const { return m_unread < m_container.capacity(); }
size_type m_unread;
container_type m_container;
boost::mutex m_mutex;
boost::condition_variable m_not_empty;
boost::condition_variable m_not_full;
};
template <class T>
class bounded_buffer_space_optimized {
public:
typedef boost::circular_buffer_space_optimized<T> container_type;
typedef typename container_type::size_type size_type;
typedef typename container_type::value_type value_type;
typedef typename boost::call_traits<value_type>::param_type param_type;
explicit bounded_buffer_space_optimized(size_type capacity) : m_container(capacity) {}
void push_front(param_type item) {
boost::unique_lock<boost::mutex> lock(m_mutex);
m_not_full.wait(lock, boost::bind(&bounded_buffer_space_optimized<value_type>::is_not_full, this));
m_container.push_front(item);
lock.unlock();
m_not_empty.notify_one();
}
void pop_back(value_type* pItem) {
boost::unique_lock<boost::mutex> lock(m_mutex);
m_not_empty.wait(lock, boost::bind(&bounded_buffer_space_optimized<value_type>::is_not_empty, this));
*pItem = m_container.back();
m_container.pop_back();
lock.unlock();
m_not_full.notify_one();
}
private:
bounded_buffer_space_optimized(const bounded_buffer_space_optimized&); // Disabled copy constructor
bounded_buffer_space_optimized& operator = (const bounded_buffer_space_optimized&); // Disabled assign operator
bool is_not_empty() const { return m_container.size() > 0; }
bool is_not_full() const { return m_container.size() < m_container.capacity(); }
container_type m_container;
boost::mutex m_mutex;
boost::condition_variable m_not_empty;
boost::condition_variable m_not_full;
};
template <class T>
class bounded_buffer_deque_based {
public:
typedef std::deque<T> container_type;
typedef typename container_type::size_type size_type;
typedef typename container_type::value_type value_type;
typedef typename boost::call_traits<value_type>::param_type param_type;
explicit bounded_buffer_deque_based(size_type capacity) : m_capacity(capacity) {}
void push_front(param_type item) {
boost::unique_lock<boost::mutex> lock(m_mutex);
m_not_full.wait(lock, boost::bind(&bounded_buffer_deque_based<value_type>::is_not_full, this));
m_container.push_front(item);
lock.unlock();
m_not_empty.notify_one();
}
void pop_back(value_type* pItem) {
boost::unique_lock<boost::mutex> lock(m_mutex);
m_not_empty.wait(lock, boost::bind(&bounded_buffer_deque_based<value_type>::is_not_empty, this));
*pItem = m_container.back();
m_container.pop_back();
lock.unlock();
m_not_full.notify_one();
}
private:
bounded_buffer_deque_based(const bounded_buffer_deque_based&); // Disabled copy constructor
bounded_buffer_deque_based& operator = (const bounded_buffer_deque_based&); // Disabled assign operator
bool is_not_empty() const { return m_container.size() > 0; }
bool is_not_full() const { return m_container.size() < m_capacity; }
const size_type m_capacity;
container_type m_container;
boost::mutex m_mutex;
boost::condition_variable m_not_empty;
boost::condition_variable m_not_full;
};
template <class T>
class bounded_buffer_list_based {
public:
typedef std::list<T> container_type;
typedef typename container_type::size_type size_type;
typedef typename container_type::value_type value_type;
typedef typename boost::call_traits<value_type>::param_type param_type;
explicit bounded_buffer_list_based(size_type capacity) : m_capacity(capacity) {}
void push_front(param_type item) {
boost::unique_lock<boost::mutex> lock(m_mutex);
m_not_full.wait(lock, boost::bind(&bounded_buffer_list_based<value_type>::is_not_full, this));
m_container.push_front(item);
lock.unlock();
m_not_empty.notify_one();
}
void pop_back(value_type* pItem) {
boost::unique_lock<boost::mutex> lock(m_mutex);
m_not_empty.wait(lock, boost::bind(&bounded_buffer_list_based<value_type>::is_not_empty, this));
*pItem = m_container.back();
m_container.pop_back();
lock.unlock();
m_not_full.notify_one();
}
private:
bounded_buffer_list_based(const bounded_buffer_list_based&); // Disabled copy constructor
bounded_buffer_list_based& operator = (const bounded_buffer_list_based&); // Disabled assign operator
bool is_not_empty() const { return m_container.size() > 0; }
bool is_not_full() const { return m_container.size() < m_capacity; }
const size_type m_capacity;
container_type m_container;
boost::mutex m_mutex;
boost::condition_variable m_not_empty;
boost::condition_variable m_not_full;
};
template<class Buffer>
class Consumer {
typedef typename Buffer::value_type value_type;
Buffer* m_container;
value_type m_item;
public:
Consumer(Buffer* buffer) : m_container(buffer) {}
void operator()() {
for (unsigned long i = 0L; i < TOTAL_ELEMENTS; ++i) {
m_container->pop_back(&m_item);
}
}
};
template<class Buffer>
class Producer {
typedef typename Buffer::value_type value_type;
Buffer* m_container;
public:
Producer(Buffer* buffer) : m_container(buffer) {}
void operator()() {
for (unsigned long i = 0L; i < TOTAL_ELEMENTS; ++i) {
m_container->push_front(value_type());
}
}
};
template<class Buffer>
void fifo_test(Buffer* buffer) {
// Start of measurement
boost::progress_timer progress;
// Initialize the buffer with some values before launching producer and consumer threads.
for (unsigned long i = QUEUE_SIZE / 2L; i > 0; --i) {
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581))
buffer->push_front(Buffer::value_type());
#else
buffer->push_front(BOOST_DEDUCED_TYPENAME Buffer::value_type());
#endif
}
Consumer<Buffer> consumer(buffer);
Producer<Buffer> producer(buffer);
// Start the threads.
boost::thread consume(consumer);
boost::thread produce(producer);
// Wait for completion.
consume.join();
produce.join();
// End of measurement
}
int main(int /*argc*/, char* /*argv*/[]) {
bounded_buffer<int> bb_int(QUEUE_SIZE);
std::cout << "bounded_buffer<int> ";
fifo_test(&bb_int);
bounded_buffer_space_optimized<int> bb_space_optimized_int(QUEUE_SIZE);
std::cout << "bounded_buffer_space_optimized<int> ";
fifo_test(&bb_space_optimized_int);
bounded_buffer_deque_based<int> bb_deque_based_int(QUEUE_SIZE);
std::cout << "bounded_buffer_deque_based<int> ";
fifo_test(&bb_deque_based_int);
bounded_buffer_list_based<int> bb_list_based_int(QUEUE_SIZE);
std::cout << "bounded_buffer_list_based<int> ";
fifo_test(&bb_list_based_int);
bounded_buffer<std::string> bb_string(QUEUE_SIZE);
std::cout << "bounded_buffer<std::string> ";
fifo_test(&bb_string);
bounded_buffer_space_optimized<std::string> bb_space_optimized_string(QUEUE_SIZE);
std::cout << "bounded_buffer_space_optimized<std::string> ";
fifo_test(&bb_space_optimized_string);
bounded_buffer_deque_based<std::string> bb_deque_based_string(QUEUE_SIZE);
std::cout << "bounded_buffer_deque_based<std::string> ";
fifo_test(&bb_deque_based_string);
bounded_buffer_list_based<std::string> bb_list_based_string(QUEUE_SIZE);
std::cout << "bounded_buffer_list_based<std::string> ";
fifo_test(&bb_list_based_string);
return 0;
}
/*
//[bounded_buffer_comparison_output
Description: Autorun "J:\Cpp\Misc\Debug\bounded_buffer_comparison.exe"
bounded_buffer<int> 5.15 s
bounded_buffer_space_optimized<int> 5.71 s
bounded_buffer_deque_based<int> 15.57 s
bounded_buffer_list_based<int> 17.33 s
bounded_buffer<std::string> 24.49 s
bounded_buffer_space_optimized<std::string> 28.33 s
bounded_buffer_deque_based<std::string> 29.45 s
bounded_buffer_list_based<std::string> 31.29 s
//] //[bounded_buffer_comparison_output]
*/

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,185 @@
// Special tests for erase_begin, erase_end and clear methods.
// Copyright (c) 2009 Jan Gaspar
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include "test.hpp"
int MyInteger::ms_exception_trigger = 0;
int InstanceCounter::ms_count = 0;
void erase_begin_test() {
circular_buffer<int> cb1(5);
cb1.push_back(1);
cb1.push_back(2);
cb1.push_back(3);
cb1.push_back(4);
cb1.push_back(5);
cb1.push_back(6);
circular_buffer<int>::pointer p = &cb1[0];
cb1.erase_begin(2);
BOOST_CHECK(cb1.size() == 3);
BOOST_CHECK(cb1[0] == 4);
BOOST_CHECK(cb1[1] == 5);
BOOST_CHECK(cb1[2] == 6);
cb1.erase_begin(3);
BOOST_CHECK(cb1.empty());
BOOST_CHECK(*p == 2);
BOOST_CHECK(*(p + 1) == 3);
BOOST_CHECK(*(p + 2) == 4);
cb1.push_back(10);
cb1.push_back(11);
cb1.push_back(12);
BOOST_CHECK(cb1.size() == 3);
BOOST_CHECK(cb1[0] == 10);
BOOST_CHECK(cb1[1] == 11);
BOOST_CHECK(cb1[2] == 12);
circular_buffer<InstanceCounter> cb2(5, InstanceCounter());
BOOST_CHECK(cb2.size() == 5);
BOOST_CHECK(InstanceCounter::count() == 5);
cb2.erase_begin(2);
BOOST_CHECK(cb2.size() == 3);
BOOST_CHECK(InstanceCounter::count() == 3);
circular_buffer<MyInteger> cb3(5);
cb3.push_back(1);
cb3.push_back(2);
cb3.push_back(3);
cb3.push_back(4);
cb3.push_back(5);
cb3.push_back(6);
cb3.erase_begin(2);
BOOST_CHECK(cb3.size() == 3);
BOOST_CHECK(cb3[0] == 4);
BOOST_CHECK(cb3[1] == 5);
BOOST_CHECK(cb3[2] == 6);
}
void erase_end_test() {
circular_buffer<int> cb1(5);
cb1.push_back(1);
cb1.push_back(2);
cb1.push_back(3);
cb1.push_back(4);
cb1.push_back(5);
cb1.push_back(6);
circular_buffer<int>::pointer p = &cb1[3];
cb1.erase_end(2);
BOOST_CHECK(cb1.size() == 3);
BOOST_CHECK(cb1[0] == 2);
BOOST_CHECK(cb1[1] == 3);
BOOST_CHECK(cb1[2] ==4);
cb1.erase_end(3);
BOOST_CHECK(cb1.empty());
BOOST_CHECK(*p == 5);
BOOST_CHECK(*(p - 1) == 4);
BOOST_CHECK(*(p - 2) == 3);
cb1.push_back(10);
cb1.push_back(11);
cb1.push_back(12);
BOOST_CHECK(cb1.size() == 3);
BOOST_CHECK(cb1[0] == 10);
BOOST_CHECK(cb1[1] == 11);
BOOST_CHECK(cb1[2] == 12);
circular_buffer<InstanceCounter> cb2(5, InstanceCounter());
BOOST_CHECK(cb2.size() == 5);
BOOST_CHECK(InstanceCounter::count() == 5);
cb2.erase_end(2);
BOOST_CHECK(cb2.size() == 3);
BOOST_CHECK(InstanceCounter::count() == 3);
circular_buffer<MyInteger> cb3(5);
cb3.push_back(1);
cb3.push_back(2);
cb3.push_back(3);
cb3.push_back(4);
cb3.push_back(5);
cb3.push_back(6);
cb3.erase_end(2);
BOOST_CHECK(cb3.size() == 3);
BOOST_CHECK(cb3[0] == 2);
BOOST_CHECK(cb3[1] == 3);
BOOST_CHECK(cb3[2] == 4);
}
void clear_test() {
circular_buffer<int> cb1(5);
cb1.push_back(1);
cb1.push_back(2);
cb1.push_back(3);
cb1.push_back(4);
cb1.push_back(5);
cb1.push_back(6);
circular_buffer<int>::pointer p = &cb1[0];
cb1.clear();
BOOST_CHECK(cb1.empty());
BOOST_CHECK(*p == 2);
BOOST_CHECK(*(p + 1) == 3);
BOOST_CHECK(*(p + 2) == 4);
BOOST_CHECK(*(p + 3) == 5);
BOOST_CHECK(*(p - 1) == 6);
circular_buffer<InstanceCounter> cb2(5, InstanceCounter());
BOOST_CHECK(cb2.size() == 5);
BOOST_CHECK(InstanceCounter::count() == 5);
cb2.clear();
BOOST_CHECK(cb2.empty());
BOOST_CHECK(InstanceCounter::count() == 0);
circular_buffer<MyInteger> cb3(5);
cb3.push_back(1);
cb3.push_back(2);
cb3.push_back(3);
cb3.push_back(4);
cb3.push_back(5);
cb3.push_back(6);
cb3.clear();
BOOST_CHECK(cb3.empty());
}
// test main
test_suite* init_unit_test_suite(int /*argc*/, char* /*argv*/[]) {
test_suite* tests = BOOST_TEST_SUITE("Unit tests for erase_begin/end and clear methods of the circular_buffer.");
tests->add(BOOST_TEST_CASE(&erase_begin_test));
tests->add(BOOST_TEST_CASE(&erase_end_test));
tests->add(BOOST_TEST_CASE(&clear_test));
return tests;
}

View File

@@ -0,0 +1,745 @@
// Demonstration of rules when an iterator is considered to be valid if the soft
// iterator invalidation definition is applied.
// Note: The soft iterator invalidation definition CAN NOT be applied
// to the space optimized circular buffer.
// Copyright (c) 2003-2008 Jan Gaspar
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include "test.hpp"
// test of the example (introduced in the documentation)
void validity_example_test() {
circular_buffer<int> cb(3);
cb.push_back(1);
cb.push_back(2);
cb.push_back(3);
circular_buffer<int>::iterator it = cb.begin();
BOOST_CHECK(*it == 1);
cb.push_back(4);
BOOST_CHECK(*it == 4);
}
void validity_insert_test() {
int array[] = { 1, 2, 3 };
// memory placement: { 1, 2, 3 }
// circular buffer: { 1, 2, 3 }
circular_buffer<int> cb(4, array, array + 3);
// it1 -> 1, it2 -> 2, it3 -> 3
circular_buffer<int>::iterator it1 = cb.begin();
circular_buffer<int>::iterator it2 = cb.begin() + 1;
circular_buffer<int>::iterator it3 = cb.begin() + 2;
cb.insert(cb.begin() + 1, 4);
// memory placement: { 1, 4, 2, 3 }
// circular buffer: { 1, 4, 2, 3 }
BOOST_CHECK(*it1 == 1);
BOOST_CHECK(*it2 == 4);
BOOST_CHECK(*it3 == 2);
BOOST_CHECK(cb[0] == 1);
BOOST_CHECK(cb[1] == 4);
BOOST_CHECK(cb[2] == 2);
BOOST_CHECK(cb[3] == 3);
// it4 -> 3
circular_buffer<int>::iterator it4 = it1 + 3;
cb.insert(cb.begin() + 1, 5);
// memory placement: { 3, 5, 4, 2 }
// circular buffer: { 5, 4, 2, 3 }
BOOST_CHECK(*it1 == 3);
BOOST_CHECK(*it2 == 5);
BOOST_CHECK(*it3 == 4);
BOOST_CHECK(*it4 == 2);
BOOST_CHECK(cb[0] == 5);
BOOST_CHECK(cb[1] == 4);
BOOST_CHECK(cb[2] == 2);
BOOST_CHECK(cb[3] == 3);
}
void validity_insert_n_test() {
// memory placement: { 1, 2, 3 }
// circular buffer: { 1, 2, 3 }
circular_buffer<int> cb(5);
cb.push_back(1);
cb.push_back(2);
cb.push_back(3);
// it1 -> 1, it2 -> 2, it3 -> 3
circular_buffer<int>::iterator it1 = cb.begin();
circular_buffer<int>::iterator it2 = cb.begin() + 1;
circular_buffer<int>::iterator it3 = cb.begin() + 2;
cb.insert(cb.begin() + 1, 2, 4);
// memory placement: { 1, 4, 4, 2, 3 }
// circular buffer: { 1, 4, 4, 2, 3 }
BOOST_CHECK(*it1 == 1);
BOOST_CHECK(*it2 == 4);
BOOST_CHECK(*it3 == 4);
BOOST_CHECK(cb[0] == 1);
BOOST_CHECK(cb[1] == 4);
BOOST_CHECK(cb[2] == 4);
BOOST_CHECK(cb[3] == 2);
BOOST_CHECK(cb[4] == 3);
// it4 -> 2, it5 -> 3
circular_buffer<int>::iterator it4 = it1 + 3;
circular_buffer<int>::iterator it5 = it1 + 4;
cb.insert(cb.begin() + 1, 2, 5);
// memory placement: { 3, 5, 4, 4, 2 } - 5 inserted only once
// circular buffer: { 5, 4, 4, 2, 3 }
BOOST_CHECK(*it1 == 3);
BOOST_CHECK(*it2 == 5);
BOOST_CHECK(*it3 == 4);
BOOST_CHECK(*it4 == 4);
BOOST_CHECK(*it5 == 2);
BOOST_CHECK(cb[0] == 5);
BOOST_CHECK(cb[1] == 4);
BOOST_CHECK(cb[2] == 4);
BOOST_CHECK(cb[3] == 2);
BOOST_CHECK(cb[4] == 3);
}
void validity_insert_range_test() {
vector<int> v1;
v1.push_back(4);
v1.push_back(5);
vector<int> v2;
v2.push_back(6);
v2.push_back(7);
// memory placement: { 1, 2, 3 }
// circular buffer: { 1, 2, 3 }
circular_buffer<int> cb1(5);
cb1.push_back(1);
cb1.push_back(2);
cb1.push_back(3);
// it11 -> 1, it12 -> 2, it13 -> 3
circular_buffer<int>::iterator it11 = cb1.begin();
circular_buffer<int>::iterator it12 = cb1.begin() + 1;
circular_buffer<int>::iterator it13 = cb1.begin() + 2;
cb1.insert(cb1.begin() + 1, v1.begin(), v1.end());
// memory placement: { 1, 4, 5, 2, 3 }
// circular buffer: { 1, 4, 5, 2, 3 }
BOOST_CHECK(*it11 == 1);
BOOST_CHECK(*it12 == 4);
BOOST_CHECK(*it13 == 5);
BOOST_CHECK(cb1[0] == 1);
BOOST_CHECK(cb1[1] == 4);
BOOST_CHECK(cb1[2] == 5);
BOOST_CHECK(cb1[3] == 2);
BOOST_CHECK(cb1[4] == 3);
// it14 -> 2, it15 -> 3
circular_buffer<int>::iterator it14 = it11 + 3;
circular_buffer<int>::iterator it15 = it11 + 4;
cb1.insert(cb1.begin() + 1, v2.begin(), v2.end());
// memory placement: { 3, 7, 4, 5, 2 } - 7 inserted only
// circular buffer: { 7, 4, 5, 2, 3 }
BOOST_CHECK(*it11 == 3);
BOOST_CHECK(*it12 == 7);
BOOST_CHECK(*it13 == 4);
BOOST_CHECK(*it14 == 5);
BOOST_CHECK(*it15 == 2);
BOOST_CHECK(cb1[0] == 7);
BOOST_CHECK(cb1[1] == 4);
BOOST_CHECK(cb1[2] == 5);
BOOST_CHECK(cb1[3] == 2);
BOOST_CHECK(cb1[4] == 3);
// memory placement: { 1, 2, 3 }
// circular buffer: { 1, 2, 3 }
circular_buffer<int> cb2(5);
cb2.push_back(1);
cb2.push_back(2);
cb2.push_back(3);
// it21 -> 1, it22 -> 2, it23 -> 3
circular_buffer<int>::iterator it21 = cb2.begin();
circular_buffer<int>::iterator it22 = cb2.begin() + 1;
circular_buffer<int>::iterator it23 = cb2.begin() + 2;
cb2.insert(cb2.begin() + 1, MyInputIterator(v1.begin()), MyInputIterator(v1.end()));
// memory placement: { 1, 4, 5, 2, 3 }
// circular buffer: { 1, 4, 5, 2, 3 }
BOOST_CHECK(*it21 == 1);
BOOST_CHECK(*it22 == 4);
BOOST_CHECK(*it23 == 5);
BOOST_CHECK(cb2[0] == 1);
BOOST_CHECK(cb2[1] == 4);
BOOST_CHECK(cb2[2] == 5);
BOOST_CHECK(cb2[3] == 2);
BOOST_CHECK(cb2[4] == 3);
// it24 -> 2, it25 -> 3
circular_buffer<int>::iterator it24 = it21 + 3;
circular_buffer<int>::iterator it25 = it21 + 4;
cb2.insert(cb2.begin() + 1, MyInputIterator(v2.begin()), MyInputIterator(v2.end()));
// memory placement: { 2, 3, 7, 4, 5 } - using input iterator inserts all items even if they are later replaced
// circular buffer: { 7, 4, 5, 2, 3 }
BOOST_CHECK(*it21 == 2);
BOOST_CHECK(*it22 == 3);
BOOST_CHECK(*it23 == 7);
BOOST_CHECK(*it24 == 4);
BOOST_CHECK(*it25 == 5);
BOOST_CHECK(cb2[0] == 7);
BOOST_CHECK(cb2[1] == 4);
BOOST_CHECK(cb2[2] == 5);
BOOST_CHECK(cb2[3] == 2);
BOOST_CHECK(cb2[4] == 3);
}
void validity_rinsert_test() {
int array[] = { 1, 2, 3 };
// memory placement: { 1, 2, 3 }
// circular buffer: { 1, 2, 3 }
circular_buffer<int> cb(4, array, array + 3);
// it1 -> 1, it2 -> 2, it3 -> 3
circular_buffer<int>::iterator it1 = cb.begin();
circular_buffer<int>::iterator it2 = cb.begin() + 1;
circular_buffer<int>::iterator it3 = cb.begin() + 2;
cb.rinsert(cb.begin() + 2, 4);
// memory placement: { 2, 4, 3, 1 }
// circular buffer: { 1, 2, 4, 3 }
BOOST_CHECK(*it1 == 2);
BOOST_CHECK(*it2 == 4);
BOOST_CHECK(*it3 == 3);
BOOST_CHECK(cb[0] == 1);
BOOST_CHECK(cb[1] == 2);
BOOST_CHECK(cb[2] == 4);
BOOST_CHECK(cb[3] == 3);
// it4 -> 1
circular_buffer<int>::iterator it4 = it1 - 1;
cb.rinsert(cb.begin() + 2, 5);
// memory placement: { 5, 4, 1, 2 }
// circular buffer: { 1, 2, 5, 4 }
BOOST_CHECK(*it1 == 5);
BOOST_CHECK(*it2 == 4);
BOOST_CHECK(*it3 == 1);
BOOST_CHECK(*it4 == 2);
BOOST_CHECK(cb[0] == 1);
BOOST_CHECK(cb[1] == 2);
BOOST_CHECK(cb[2] == 5);
BOOST_CHECK(cb[3] == 4);
}
void validity_rinsert_n_test() {
// memory placement: { 1, 2, 3 }
// circular buffer: { 1, 2, 3 }
circular_buffer<int> cb(5);
cb.push_back(1);
cb.push_back(2);
cb.push_back(3);
// it1 -> 1, it2 -> 2, it3 -> 3
circular_buffer<int>::iterator it1 = cb.begin();
circular_buffer<int>::iterator it2 = cb.begin() + 1;
circular_buffer<int>::iterator it3 = cb.begin() + 2;
cb.rinsert(cb.begin() + 2, 2, 4);
// memory placement: { 4, 4, 3, 1, 2 }
// circular buffer: { 1, 2, 4, 4, 3 }
BOOST_CHECK(*it1 == 4);
BOOST_CHECK(*it2 == 4);
BOOST_CHECK(*it3 == 3);
BOOST_CHECK(cb[0] == 1);
BOOST_CHECK(cb[1] == 2);
BOOST_CHECK(cb[2] == 4);
BOOST_CHECK(cb[3] == 4);
BOOST_CHECK(cb[4] == 3);
// it4 -> 1, it5 -> 2
circular_buffer<int>::iterator it4 = it1 - 2;
circular_buffer<int>::iterator it5 = it1 - 1;
cb.rinsert(cb.begin() + 4, 2, 5);
// memory placement: { 4, 5, 1, 2, 4 } - 5 inserted only once
// circular buffer: { 1, 2, 4, 4, 5 }
BOOST_CHECK(*it1 == 4);
BOOST_CHECK(*it2 == 5);
BOOST_CHECK(*it3 == 1);
BOOST_CHECK(*it4 == 2);
BOOST_CHECK(*it5 == 4);
BOOST_CHECK(cb[0] == 1);
BOOST_CHECK(cb[1] == 2);
BOOST_CHECK(cb[2] == 4);
BOOST_CHECK(cb[3] == 4);
BOOST_CHECK(cb[4] == 5);
}
void validity_rinsert_range_test() {
vector<int> v1;
v1.push_back(4);
v1.push_back(5);
vector<int> v2;
v2.push_back(6);
v2.push_back(7);
// memory placement: { 1, 2, 3 }
// circular buffer: { 1, 2, 3 }
circular_buffer<int> cb1(5);
cb1.push_back(1);
cb1.push_back(2);
cb1.push_back(3);
// it1 -> 1, it2 -> 2, it3 -> 3
circular_buffer<int>::iterator it11 = cb1.begin();
circular_buffer<int>::iterator it12 = cb1.begin() + 1;
circular_buffer<int>::iterator it13 = cb1.begin() + 2;
cb1.rinsert(cb1.begin() + 2, v1.begin(), v1.end());
// memory placement: { 4, 5, 3, 1, 2 }
// circular buffer: { 1, 2, 4, 5, 3 }
BOOST_CHECK(*it11 == 4);
BOOST_CHECK(*it12 == 5);
BOOST_CHECK(*it13 == 3);
BOOST_CHECK(cb1[0] == 1);
BOOST_CHECK(cb1[1] == 2);
BOOST_CHECK(cb1[2] == 4);
BOOST_CHECK(cb1[3] == 5);
BOOST_CHECK(cb1[4] == 3);
// it14 -> 1, it15 -> 2
circular_buffer<int>::iterator it14 = it11 - 2;
circular_buffer<int>::iterator it15 = it11 - 1;
cb1.rinsert(cb1.begin() + 4, v2.begin(), v2.end());
// memory placement: { 5, 6, 1, 2, 4 } - 6 inserted only
// circular buffer: { 1, 2, 4, 5, 6 }
BOOST_CHECK(*it11 == 5);
BOOST_CHECK(*it12 == 6);
BOOST_CHECK(*it13 == 1);
BOOST_CHECK(*it14 == 2);
BOOST_CHECK(*it15 == 4);
BOOST_CHECK(cb1[0] == 1);
BOOST_CHECK(cb1[1] == 2);
BOOST_CHECK(cb1[2] == 4);
BOOST_CHECK(cb1[3] == 5);
BOOST_CHECK(cb1[4] == 6);
// memory placement: { 1, 2, 3 }
// circular buffer: { 1, 2, 3 }
circular_buffer<int> cb2(5);
cb2.push_back(1);
cb2.push_back(2);
cb2.push_back(3);
// it1 -> 1, it2 -> 2, it3 -> 3
circular_buffer<int>::iterator it21 = cb2.begin();
circular_buffer<int>::iterator it22 = cb2.begin() + 1;
circular_buffer<int>::iterator it23 = cb2.begin() + 2;
cb2.rinsert(cb2.begin() + 2, MyInputIterator(v1.begin()), MyInputIterator(v1.end()));
// memory placement: { 4, 5, 3, 1, 2 }
// circular buffer: { 1, 2, 4, 5, 3 }
BOOST_CHECK(*it21 == 4);
BOOST_CHECK(*it22 == 5);
BOOST_CHECK(*it23 == 3);
BOOST_CHECK(cb2[0] == 1);
BOOST_CHECK(cb2[1] == 2);
BOOST_CHECK(cb2[2] == 4);
BOOST_CHECK(cb2[3] == 5);
BOOST_CHECK(cb2[4] == 3);
// it24 -> 1, it25 -> 2
circular_buffer<int>::iterator it24 = it21 - 2;
circular_buffer<int>::iterator it25 = it21 - 1;
cb2.rinsert(cb2.begin() + 4, MyInputIterator(v2.begin()), MyInputIterator(v2.end()));
// memory placement: { 5, 6, 1, 2, 4 }
// circular buffer: { 1, 2, 4, 5, 6 }
BOOST_CHECK(*it21 == 5);
BOOST_CHECK(*it22 == 6);
BOOST_CHECK(*it23 == 1);
BOOST_CHECK(*it24 == 2);
BOOST_CHECK(*it25 == 4);
BOOST_CHECK(cb2[0] == 1);
BOOST_CHECK(cb2[1] == 2);
BOOST_CHECK(cb2[2] == 4);
BOOST_CHECK(cb2[3] == 5);
BOOST_CHECK(cb2[4] == 6);
}
void validity_erase_test() {
// memory placement: { 4, 5, 1, 2, 3 }
// circular buffer: { 1, 2, 3, 4, 5 }
circular_buffer<int> cb(5);
cb.push_back(-1);
cb.push_back(0);
cb.push_back(1);
cb.push_back(2);
cb.push_back(3);
cb.push_back(4);
cb.push_back(5);
// it1 -> 1, it2 -> 2, it3 -> 3, it4 -> 4
circular_buffer<int>::iterator it1 = cb.begin();
circular_buffer<int>::iterator it2 = cb.begin() + 1;
circular_buffer<int>::iterator it3 = cb.begin() + 2;
circular_buffer<int>::iterator it4 = cb.begin() + 3;
cb.erase(cb.begin() + 1);
// memory placement: { 5, X, 1, 3, 4 }
// circular buffer: { 1, 3, 4, 5 }
BOOST_CHECK(*it1 == 1);
BOOST_CHECK(*it2 == 3);
BOOST_CHECK(*it3 == 4);
BOOST_CHECK(*it4 == 5);
BOOST_CHECK(cb[0] == 1);
BOOST_CHECK(cb[1] == 3);
BOOST_CHECK(cb[2] == 4);
BOOST_CHECK(cb[3] == 5);
}
void validity_erase_range_test() {
// memory placement: { 4, 5, 6, 1, 2, 3 }
// circular buffer: { 1, 2, 3, 4, 5, 6 }
circular_buffer<int> cb(6);
cb.push_back(-2);
cb.push_back(-1);
cb.push_back(0);
cb.push_back(1);
cb.push_back(2);
cb.push_back(3);
cb.push_back(4);
cb.push_back(5);
cb.push_back(6);
// it1 -> 1, it2 -> 2, it3 -> 3, it4 -> 4
circular_buffer<int>::iterator it1 = cb.begin();
circular_buffer<int>::iterator it2 = cb.begin() + 1;
circular_buffer<int>::iterator it3 = cb.begin() + 2;
circular_buffer<int>::iterator it4 = cb.begin() + 3;
cb.erase(cb.begin() + 2, cb.begin() + 4);
// memory placement: { 6, X, X, 1, 2, 5 }
// circular buffer: { 1, 2, 5, 6 }
BOOST_CHECK(*it1 == 1);
BOOST_CHECK(*it2 == 2);
BOOST_CHECK(*it3 == 5);
BOOST_CHECK(*it4 == 6);
BOOST_CHECK(cb[0] == 1);
BOOST_CHECK(cb[1] == 2);
BOOST_CHECK(cb[2] == 5);
BOOST_CHECK(cb[3] == 6);
}
void validity_rerase_test() {
// memory placement: { 4, 5, 1, 2, 3 }
// circular buffer: { 1, 2, 3, 4, 5 }
circular_buffer<int> cb(5);
cb.push_back(-1);
cb.push_back(0);
cb.push_back(1);
cb.push_back(2);
cb.push_back(3);
cb.push_back(4);
cb.push_back(5);
// it1 -> 2, it2 -> 3, it3 -> 4, it4 -> 5
circular_buffer<int>::iterator it1 = cb.begin() + 1;
circular_buffer<int>::iterator it2 = cb.begin() + 2;
circular_buffer<int>::iterator it3 = cb.begin() + 3;
circular_buffer<int>::iterator it4 = cb.begin() + 4;
cb.rerase(cb.begin() + 1);
// memory placement: { 4, 5, X, 1, 3 }
// circular buffer: { 1, 3, 4, 5 }
BOOST_CHECK(*it1 == 1);
BOOST_CHECK(*it2 == 3);
BOOST_CHECK(*it3 == 4);
BOOST_CHECK(*it4 == 5);
BOOST_CHECK(cb[0] == 1);
BOOST_CHECK(cb[1] == 3);
BOOST_CHECK(cb[2] == 4);
BOOST_CHECK(cb[3] == 5);
}
void validity_rerase_range_test() {
// memory placement: { 4, 5, 6, 1, 2, 3 }
// circular buffer: { 1, 2, 3, 4, 5, 6 }
circular_buffer<int> cb(6);
cb.push_back(-2);
cb.push_back(-1);
cb.push_back(0);
cb.push_back(1);
cb.push_back(2);
cb.push_back(3);
cb.push_back(4);
cb.push_back(5);
cb.push_back(6);
// it1 -> 3, it2 -> 4, it3 -> 5, it4 -> 6
circular_buffer<int>::iterator it1 = cb.begin() + 2;
circular_buffer<int>::iterator it2 = cb.begin() + 3;
circular_buffer<int>::iterator it3 = cb.begin() + 4;
circular_buffer<int>::iterator it4 = cb.begin() + 5;
cb.rerase(cb.begin() + 2, cb.begin() + 4);
// memory placement: { 2, 5, 6, X, X, 1 }
// circular buffer: { 1, 2, 5, 6 }
BOOST_CHECK(*it1 == 1);
BOOST_CHECK(*it2 == 2);
BOOST_CHECK(*it3 == 5);
BOOST_CHECK(*it4 == 6);
BOOST_CHECK(cb[0] == 1);
BOOST_CHECK(cb[1] == 2);
BOOST_CHECK(cb[2] == 5);
BOOST_CHECK(cb[3] == 6);
}
void validity_linearize_test() {
// memory placement: { 3, 1, 2 }
// circular buffer: { 1, 2, 3 }
circular_buffer<int> cb(3);
cb.push_back(0);
cb.push_back(1);
cb.push_back(2);
cb.push_back(3);
// it1 -> 1, it2 -> 2, it3 -> 3
circular_buffer<int>::iterator it1 = cb.begin();
circular_buffer<int>::iterator it2 = cb.begin() + 1;
circular_buffer<int>::iterator it3 = cb.begin() + 2;
cb.linearize();
// memory placement: { 1, 2, 3 }
// circular buffer: { 1, 2, 3 }
BOOST_CHECK(*it1 == 2);
BOOST_CHECK(*it2 == 3);
BOOST_CHECK(*it3 == 1);
BOOST_CHECK(cb[0] == 1);
BOOST_CHECK(cb[1] == 2);
BOOST_CHECK(cb[2] == 3);
}
void validity_swap_test() {
// memory placement: { 3, 1, 2 }
// circular buffer: { 1, 2, 3 }
circular_buffer<int> cb1(3);
cb1.push_back(0);
cb1.push_back(1);
cb1.push_back(2);
cb1.push_back(3);
// it11 -> 1, it12 -> 2, it13 -> 3
circular_buffer<int>::iterator it11 = cb1.begin();
circular_buffer<int>::iterator it12 = cb1.begin() + 1;
circular_buffer<int>::iterator it13 = cb1.begin() + 2;
// memory placement: { 4, 5, 6 }
// circular buffer: { 4, 5, 6 }
circular_buffer<int> cb2(5);
cb2.push_back(4);
cb2.push_back(5);
cb2.push_back(6);
// it21 -> 4, it22 -> 5, it23 -> 6
circular_buffer<int>::iterator it21 = cb2.begin();
circular_buffer<int>::iterator it22 = cb2.begin() + 1;
circular_buffer<int>::iterator it23 = cb2.begin() + 2;
cb1.swap(cb2);
// Although iterators refer to the original elements,
// their interal state is inconsistent and no other operation
// (except dereferencing) can be invoked on them any more.
BOOST_CHECK(*it11 == 1);
BOOST_CHECK(*it12 == 2);
BOOST_CHECK(*it13 == 3);
BOOST_CHECK(*it21 == 4);
BOOST_CHECK(*it22 == 5);
BOOST_CHECK(*it23 == 6);
BOOST_CHECK(cb1[0] == 4);
BOOST_CHECK(cb1[1] == 5);
BOOST_CHECK(cb1[2] == 6);
BOOST_CHECK(cb2[0] == 1);
BOOST_CHECK(cb2[1] == 2);
BOOST_CHECK(cb2[2] == 3);
}
void validity_push_back_test() {
// memory placement: { 3, 1, 2 }
// circular buffer: { 1, 2, 3 }
circular_buffer<int> cb(3);
cb.push_back(0);
cb.push_back(1);
cb.push_back(2);
cb.push_back(3);
// it1 -> 1, it2 -> 2, it3 -> 3
circular_buffer<int>::iterator it1 = cb.begin();
circular_buffer<int>::iterator it2 = cb.begin() + 1;
circular_buffer<int>::iterator it3 = cb.begin() + 2;
cb.push_back(4);
// memory placement: { 3, 4, 2 }
// circular buffer: { 2, 3, 4 }
BOOST_CHECK(*it1 == 4);
BOOST_CHECK(*it2 == 2);
BOOST_CHECK(*it3 == 3);
BOOST_CHECK(cb[0] == 2);
BOOST_CHECK(cb[1] == 3);
BOOST_CHECK(cb[2] == 4);
}
void validity_push_front_test() {
// memory placement: { 3, 1, 2 }
// circular buffer: { 1, 2, 3 }
circular_buffer<int> cb(3);
cb.push_back(0);
cb.push_back(1);
cb.push_back(2);
cb.push_back(3);
// it1 -> 1, it2 -> 2, it3 -> 3
circular_buffer<int>::iterator it1 = cb.begin();
circular_buffer<int>::iterator it2 = cb.begin() + 1;
circular_buffer<int>::iterator it3 = cb.begin() + 2;
cb.push_front(4);
// memory placement: { 4, 1, 2 }
// circular buffer: { 4, 1, 2 }
BOOST_CHECK(*it1 == 1);
BOOST_CHECK(*it2 == 2);
BOOST_CHECK(*it3 == 4);
BOOST_CHECK(cb[0] == 4);
BOOST_CHECK(cb[1] == 1);
BOOST_CHECK(cb[2] == 2);
}
void validity_pop_back_test() {
// memory placement: { 3, 1, 2 }
// circular buffer: { 1, 2, 3 }
circular_buffer<int> cb(3);
cb.push_back(0);
cb.push_back(1);
cb.push_back(2);
cb.push_back(3);
// it1 -> 1, it2 -> 2
circular_buffer<int>::iterator it1 = cb.begin();
circular_buffer<int>::iterator it2 = cb.begin() + 1;
cb.pop_back();
// memory placement: { X, 1, 2 }
// circular buffer: { 1, 2 }
BOOST_CHECK(*it1 == 1);
BOOST_CHECK(*it2 == 2);
BOOST_CHECK(cb[0] == 1);
BOOST_CHECK(cb[1] == 2);
}
void validity_pop_front_test() {
// memory placement: { 3, 1, 2 }
// circular buffer: { 1, 2, 3 }
circular_buffer<int> cb(3);
cb.push_back(0);
cb.push_back(1);
cb.push_back(2);
cb.push_back(3);
// it1 -> 2, it2 -> 3
circular_buffer<int>::iterator it1 = cb.begin() + 1;
circular_buffer<int>::iterator it2 = cb.begin() + 2;
cb.pop_front();
// memory placement: { 3, X, 2 }
// circular buffer: { 2, 3 }
BOOST_CHECK(*it1 == 2);
BOOST_CHECK(*it2 == 3);
BOOST_CHECK(cb[0] == 2);
BOOST_CHECK(cb[1] == 3);
}
// test main
test_suite* init_unit_test_suite(int /*argc*/, char* /*argv*/[]) {
test_suite* tests = BOOST_TEST_SUITE("Unit tests for the iterator of the circular_buffer.");
tests->add(BOOST_TEST_CASE(&validity_example_test));
tests->add(BOOST_TEST_CASE(&validity_insert_test));
tests->add(BOOST_TEST_CASE(&validity_insert_n_test));
tests->add(BOOST_TEST_CASE(&validity_insert_range_test));
tests->add(BOOST_TEST_CASE(&validity_rinsert_test));
tests->add(BOOST_TEST_CASE(&validity_rinsert_n_test));
tests->add(BOOST_TEST_CASE(&validity_rinsert_range_test));
tests->add(BOOST_TEST_CASE(&validity_erase_test));
tests->add(BOOST_TEST_CASE(&validity_erase_range_test));
tests->add(BOOST_TEST_CASE(&validity_rerase_test));
tests->add(BOOST_TEST_CASE(&validity_rerase_range_test));
tests->add(BOOST_TEST_CASE(&validity_linearize_test));
tests->add(BOOST_TEST_CASE(&validity_swap_test));
tests->add(BOOST_TEST_CASE(&validity_push_back_test));
tests->add(BOOST_TEST_CASE(&validity_push_front_test));
tests->add(BOOST_TEST_CASE(&validity_pop_back_test));
tests->add(BOOST_TEST_CASE(&validity_pop_front_test));
return tests;
}

View File

@@ -0,0 +1,196 @@
// Test of the space optimized adaptor of the circular buffer.
// Copyright (c) 2003-2008 Jan Gaspar
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include "test.hpp"
#define CB_CONTAINER circular_buffer_space_optimized
#include "common.ipp"
typedef circular_buffer_space_optimized<MyInteger> cb_space_optimized;
typedef cb_space_optimized::capacity_type capacity_ctrl;
// min_capacity test (it is useful to use a debug tool)
void min_capacity_test() {
vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
v.push_back(5);
cb_space_optimized cb1(capacity_ctrl(10, 10));
cb_space_optimized cb2(capacity_ctrl(10, 5), 1);
cb_space_optimized cb3(capacity_ctrl(20, 10), v.begin(), v.end());
BOOST_CHECK(cb1.size() == 0);
BOOST_CHECK(cb1.capacity().capacity() == 10);
BOOST_CHECK(cb1.capacity().min_capacity() == 10);
BOOST_CHECK(cb2[0] == 1);
BOOST_CHECK(cb2.size() == 10);
BOOST_CHECK(cb2.capacity() == 10);
BOOST_CHECK(cb2.capacity().min_capacity() == 5);
BOOST_CHECK(cb3[0] == 1);
BOOST_CHECK(cb3.size() == 5);
BOOST_CHECK(cb3.capacity() == 20);
BOOST_CHECK(cb3.capacity().min_capacity() == 10);
BOOST_CHECK(cb1.capacity().min_capacity() <= cb1.internal_capacity());
BOOST_CHECK(cb2.capacity().min_capacity() <= cb2.internal_capacity());
BOOST_CHECK(cb3.capacity().min_capacity() <= cb3.internal_capacity());
cb2.erase(cb2.begin() + 2, cb2.end());
BOOST_CHECK(cb2.size() == 2);
BOOST_CHECK(cb2.capacity().min_capacity() <= cb2.internal_capacity());
cb2.clear();
cb3.clear();
BOOST_CHECK(cb2.empty());
BOOST_CHECK(cb3.empty());
BOOST_CHECK(cb2.capacity().min_capacity() <= cb2.internal_capacity());
BOOST_CHECK(cb3.capacity().min_capacity() <= cb3.internal_capacity());
}
void capacity_control_test() {
circular_buffer_space_optimized<int>::capacity_type c1 = 10;
circular_buffer_space_optimized<int>::capacity_type c2 =
circular_buffer_space_optimized<int>::capacity_type(20, 5);
circular_buffer_space_optimized<int>::capacity_type c3 = c2;
BOOST_CHECK(c1.capacity() == 10);
BOOST_CHECK(c1.min_capacity() == 0);
BOOST_CHECK(c2.capacity() == 20);
BOOST_CHECK(c2.min_capacity() == 5);
BOOST_CHECK(c3.capacity() == 20);
BOOST_CHECK(c3.min_capacity() == 5);
c1 = c2;
BOOST_CHECK(c1.capacity() == 20);
BOOST_CHECK(c1.min_capacity() == 5);
}
void specific_constructors_test() {
cb_space_optimized cb1;
BOOST_CHECK(cb1.capacity() == 0);
BOOST_CHECK(cb1.capacity().min_capacity() == 0);
BOOST_CHECK(cb1.internal_capacity() == 0);
BOOST_CHECK(cb1.size() == 0);
cb1.push_back(1);
cb1.push_back(2);
cb1.push_back(3);
BOOST_CHECK(cb1.size() == 0);
BOOST_CHECK(cb1.capacity() == 0);
vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
cb_space_optimized cb2(v.begin(), v.end());
BOOST_CHECK(cb2.capacity() == 3);
BOOST_CHECK(cb2.capacity().min_capacity() == 0);
BOOST_CHECK(cb2.size() == 3);
}
void shrink_to_fit_test() {
cb_space_optimized cb(1000);
cb.push_back(1);
cb.push_back(2);
cb.push_back(3);
BOOST_CHECK(cb.size() == 3);
BOOST_CHECK(cb.capacity() == 1000);
size_t internal_capacity = cb.internal_capacity();
cb_space_optimized(cb).swap(cb);
BOOST_CHECK(cb.size() == 3);
BOOST_CHECK(cb.capacity() == 1000);
BOOST_CHECK(internal_capacity >= cb.internal_capacity());
}
void iterator_invalidation_test() {
#if BOOST_CB_ENABLE_DEBUG
cb_space_optimized cb1(10, 1);
cb1.push_back(2);
cb1.push_back(3);
cb1.push_back(4);
cb_space_optimized::iterator it1 = cb1.end();
cb_space_optimized::const_iterator it2 = cb1.begin();
cb_space_optimized::iterator it3 = cb1.begin() + 6;
cb1.set_capacity(10);
BOOST_CHECK(it1.is_valid(&cb1));
BOOST_CHECK(!it2.is_valid(&cb1));
BOOST_CHECK(!it3.is_valid(&cb1));
it1 = cb1.end();
it2 = cb1.begin();
it3 = cb1.begin() + 6;
cb1.rset_capacity(10);
BOOST_CHECK(it1.is_valid(&cb1));
BOOST_CHECK(!it2.is_valid(&cb1));
BOOST_CHECK(!it3.is_valid(&cb1));
it1 = cb1.end();
it2 = cb1.begin();
it3 = cb1.begin() + 6;
cb1.resize(10);
BOOST_CHECK(it1.is_valid(&cb1));
BOOST_CHECK(!it2.is_valid(&cb1));
BOOST_CHECK(!it3.is_valid(&cb1));
it1 = cb1.end();
it2 = cb1.begin();
it3 = cb1.begin() + 6;
cb1.rresize(10);
BOOST_CHECK(it1.is_valid(&cb1));
BOOST_CHECK(!it2.is_valid(&cb1));
BOOST_CHECK(!it3.is_valid(&cb1));
{
cb_space_optimized cb2(10, 1);
cb2.push_back(2);
cb2.push_back(3);
cb2.push_back(4);
it1 = cb2.end();
it2 = cb2.begin();
it3 = cb2.begin() + 6;
}
BOOST_CHECK(!it1.is_valid(&cb1));
BOOST_CHECK(!it2.is_valid(&cb1));
BOOST_CHECK(!it3.is_valid(&cb1));
#endif // #if BOOST_CB_ENABLE_DEBUG
}
// test main
test_suite* init_unit_test_suite(int /*argc*/, char* /*argv*/[]) {
test_suite* tests = BOOST_TEST_SUITE("Unit tests for the circular_buffer_space_optimized.");
add_common_tests(tests);
tests->add(BOOST_TEST_CASE(&min_capacity_test));
tests->add(BOOST_TEST_CASE(&capacity_control_test));
tests->add(BOOST_TEST_CASE(&specific_constructors_test));
tests->add(BOOST_TEST_CASE(&shrink_to_fit_test));
tests->add(BOOST_TEST_CASE(&iterator_invalidation_test));
return tests;
}

View File

@@ -0,0 +1,146 @@
// Header file for the test of the circular buffer library.
// Copyright (c) 2003-2008 Jan Gaspar
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#if !defined(BOOST_CIRCULAR_BUFFER_TEST_HPP)
#define BOOST_CIRCULAR_BUFFER_TEST_HPP
#if defined(_MSC_VER) && _MSC_VER >= 1200
#pragma once
#endif
#define BOOST_CB_TEST
#include <boost/circular_buffer.hpp>
#include <boost/test/included/unit_test.hpp>
#include <boost/iterator.hpp>
#include <iterator>
#include <numeric>
#include <vector>
#if !defined(BOOST_NO_EXCEPTIONS)
#include <exception>
#endif
// Integer (substitute for int) - more appropriate for testing
class MyInteger {
private:
int* m_pValue;
static int ms_exception_trigger;
void check_exception() {
if (ms_exception_trigger > 0) {
if (--ms_exception_trigger == 0) {
delete m_pValue;
m_pValue = 0;
#if !defined(BOOST_NO_EXCEPTIONS)
throw std::exception();
#endif
}
}
}
public:
MyInteger() : m_pValue(new int(0)) { check_exception(); }
MyInteger(int i) : m_pValue(new int(i)) { check_exception(); }
MyInteger(const MyInteger& src) : m_pValue(new int(src)) { check_exception(); }
~MyInteger() { delete m_pValue; }
MyInteger& operator = (const MyInteger& src) {
if (this == &src)
return *this;
check_exception();
delete m_pValue;
m_pValue = new int(src);
return *this;
}
operator int () const { return *m_pValue; }
static void set_exception_trigger(int n) { ms_exception_trigger = n; }
};
// default constructible class
class MyDefaultConstructible
{
public:
MyDefaultConstructible() : m_n(1) {}
MyDefaultConstructible(int n) : m_n(n) {}
int m_n;
};
// class counting instances of self
class InstanceCounter {
public:
InstanceCounter() { increment(); }
InstanceCounter(const InstanceCounter& y) { y.increment(); }
~InstanceCounter() { decrement(); }
static int count() { return ms_count; }
private:
void increment() const { ++ms_count; }
void decrement() const { --ms_count; }
static int ms_count;
};
// dummy class suitable for iterator referencing test
class Dummy {
public:
enum DummyEnum {
eVar,
eFnc,
eConst,
eVirtual
};
Dummy() : m_n(eVar) {}
DummyEnum fnc() { return eFnc; }
DummyEnum const_fnc() const { return eConst; }
virtual DummyEnum virtual_fnc() { return eVirtual; }
DummyEnum m_n;
};
// simulator of an input iterator
struct MyInputIterator
: boost::iterator<std::input_iterator_tag, int, ptrdiff_t, int*, int&> {
typedef std::vector<int>::iterator vector_iterator;
typedef int value_type;
typedef int* pointer;
typedef int& reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
explicit MyInputIterator(const vector_iterator& it) : m_it(it) {}
MyInputIterator& operator = (const MyInputIterator& it) {
if (this == &it)
return *this;
m_it = it.m_it;
return *this;
}
reference operator * () const { return *m_it; }
pointer operator -> () const { return &(operator*()); }
MyInputIterator& operator ++ () {
++m_it;
return *this;
}
MyInputIterator operator ++ (int) {
MyInputIterator tmp = *this;
++*this;
return tmp;
}
bool operator == (const MyInputIterator& it) const { return m_it == it.m_it; }
bool operator != (const MyInputIterator& it) const { return m_it != it.m_it; }
private:
vector_iterator m_it;
};
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) && !defined(BOOST_MSVC_STD_ITERATOR)
inline std::input_iterator_tag iterator_category(const MyInputIterator&) {
return std::input_iterator_tag();
}
inline int* value_type(const MyInputIterator&) { return 0; }
inline ptrdiff_t* distance_type(const MyInputIterator&) { return 0; }
#endif // #if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) && !defined(BOOST_MSVC_STD_ITERATOR)
using boost::unit_test::test_suite;
using namespace boost;
using namespace std;
#endif // #if !defined(BOOST_CIRCULAR_BUFFER_TEST_HPP)