122 lines
6.4 KiB
C++
122 lines
6.4 KiB
C++
|
///////////////////////////////////////////////////////////////
|
||
|
// Copyright 2018 Nick Thompson. Distributed under the Boost
|
||
|
// Software License, Version 1.0. (See accompanying file
|
||
|
// LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt
|
||
|
|
||
|
/*`This example demonstrates the usage of the MPC backend for multiprecision complex numbers.
|
||
|
In the following, we will show how using MPC backend allows for the same operations as the C++ standard library complex numbers.
|
||
|
*/
|
||
|
|
||
|
//[mpc_eg
|
||
|
#include <iostream>
|
||
|
#include <complex>
|
||
|
#include <boost/multiprecision/mpc.hpp>
|
||
|
|
||
|
template<class Complex>
|
||
|
void complex_number_examples()
|
||
|
{
|
||
|
Complex z1{0, 1};
|
||
|
std::cout << std::setprecision(std::numeric_limits<typename Complex::value_type>::digits10);
|
||
|
std::cout << std::scientific << std::fixed;
|
||
|
std::cout << "Print a complex number: " << z1 << std::endl;
|
||
|
std::cout << "Square it : " << z1*z1 << std::endl;
|
||
|
std::cout << "Real part : " << z1.real() << " = " << real(z1) << std::endl;
|
||
|
std::cout << "Imaginary part : " << z1.imag() << " = " << imag(z1) << std::endl;
|
||
|
using std::abs;
|
||
|
std::cout << "Absolute value : " << abs(z1) << std::endl;
|
||
|
std::cout << "Argument : " << arg(z1) << std::endl;
|
||
|
std::cout << "Norm : " << norm(z1) << std::endl;
|
||
|
std::cout << "Complex conjugate : " << conj(z1) << std::endl;
|
||
|
std::cout << "Projection onto Riemann sphere: " << proj(z1) << std::endl;
|
||
|
typename Complex::value_type r = 1;
|
||
|
typename Complex::value_type theta = 0.8;
|
||
|
using std::polar;
|
||
|
std::cout << "Polar coordinates (phase = 0) : " << polar(r) << std::endl;
|
||
|
std::cout << "Polar coordinates (phase !=0) : " << polar(r, theta) << std::endl;
|
||
|
|
||
|
std::cout << "\nElementary special functions:\n";
|
||
|
using std::exp;
|
||
|
std::cout << "exp(z1) = " << exp(z1) << std::endl;
|
||
|
using std::log;
|
||
|
std::cout << "log(z1) = " << log(z1) << std::endl;
|
||
|
using std::log10;
|
||
|
std::cout << "log10(z1) = " << log10(z1) << std::endl;
|
||
|
using std::pow;
|
||
|
std::cout << "pow(z1, z1) = " << pow(z1, z1) << std::endl;
|
||
|
using std::sqrt;
|
||
|
std::cout << "Take its square root : " << sqrt(z1) << std::endl;
|
||
|
using std::sin;
|
||
|
std::cout << "sin(z1) = " << sin(z1) << std::endl;
|
||
|
using std::cos;
|
||
|
std::cout << "cos(z1) = " << cos(z1) << std::endl;
|
||
|
using std::tan;
|
||
|
std::cout << "tan(z1) = " << tan(z1) << std::endl;
|
||
|
using std::asin;
|
||
|
std::cout << "asin(z1) = " << asin(z1) << std::endl;
|
||
|
using std::acos;
|
||
|
std::cout << "acos(z1) = " << acos(z1) << std::endl;
|
||
|
using std::atan;
|
||
|
std::cout << "atan(z1) = " << atan(z1) << std::endl;
|
||
|
using std::sinh;
|
||
|
std::cout << "sinh(z1) = " << sinh(z1) << std::endl;
|
||
|
using std::cosh;
|
||
|
std::cout << "cosh(z1) = " << cosh(z1) << std::endl;
|
||
|
using std::tanh;
|
||
|
std::cout << "tanh(z1) = " << tanh(z1) << std::endl;
|
||
|
using std::asinh;
|
||
|
std::cout << "asinh(z1) = " << asinh(z1) << std::endl;
|
||
|
using std::acosh;
|
||
|
std::cout << "acosh(z1) = " << acosh(z1) << std::endl;
|
||
|
using std::atanh;
|
||
|
std::cout << "atanh(z1) = " << atanh(z1) << std::endl;
|
||
|
}
|
||
|
|
||
|
int main()
|
||
|
{
|
||
|
std::cout << "First, some operations we usually perform with std::complex:\n";
|
||
|
complex_number_examples<std::complex<double>>();
|
||
|
std::cout << "\nNow the same operations performed using the MPC backend:\n";
|
||
|
complex_number_examples<boost::multiprecision::mpc_complex_50>();
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
//]
|
||
|
|
||
|
/*
|
||
|
|
||
|
//[mpc_out
|
||
|
|
||
|
Print a complex number: (0.00000000000000000000000000000000000000000000000000,1.00000000000000000000000000000000000000000000000000)
|
||
|
Square it : -1.00000000000000000000000000000000000000000000000000
|
||
|
Real part : 0.00000000000000000000000000000000000000000000000000 = 0.00000000000000000000000000000000000000000000000000
|
||
|
Imaginary part : 1.00000000000000000000000000000000000000000000000000 = 1.00000000000000000000000000000000000000000000000000
|
||
|
Absolute value : 1.00000000000000000000000000000000000000000000000000
|
||
|
Argument : 1.57079632679489661923132169163975144209858469968755
|
||
|
Norm : 1.00000000000000000000000000000000000000000000000000
|
||
|
Complex conjugate : (0.00000000000000000000000000000000000000000000000000,-1.00000000000000000000000000000000000000000000000000)
|
||
|
Projection onto Riemann sphere: (0.00000000000000000000000000000000000000000000000000,1.00000000000000000000000000000000000000000000000000)
|
||
|
Polar coordinates (phase = 0) : 1.00000000000000000000000000000000000000000000000000
|
||
|
Polar coordinates (phase !=0) : (0.69670670934716538906374002277244853473117519431538,0.71735609089952279256716781570337728075604730751255)
|
||
|
|
||
|
Elementary special functions:
|
||
|
exp(z1) = (0.54030230586813971740093660744297660373231042061792,0.84147098480789650665250232163029899962256306079837)
|
||
|
log(z1) = (0.00000000000000000000000000000000000000000000000000,1.57079632679489661923132169163975144209858469968755)
|
||
|
log10(z1) = (0.00000000000000000000000000000000000000000000000000,0.68218817692092067374289181271567788510506374186196)
|
||
|
pow(z1, z1) = 0.20787957635076190854695561983497877003387784163177
|
||
|
Take its square root : (0.70710678118654752440084436210484903928483593768847,0.70710678118654752440084436210484903928483593768847)
|
||
|
sin(z1) = (0.00000000000000000000000000000000000000000000000000,1.17520119364380145688238185059560081515571798133410)
|
||
|
cos(z1) = 1.54308063481524377847790562075706168260152911236587
|
||
|
tan(z1) = (0.00000000000000000000000000000000000000000000000000,0.76159415595576488811945828260479359041276859725794)
|
||
|
asin(z1) = (0.00000000000000000000000000000000000000000000000000,0.88137358701954302523260932497979230902816032826163)
|
||
|
acos(z1) = (1.57079632679489661923132169163975144209858469968755,-0.88137358701954302523260932497979230902816032826163)
|
||
|
atan(z1) = (0.00000000000000000000000000000000000000000000000000,inf)
|
||
|
sinh(z1) = (0.00000000000000000000000000000000000000000000000000,0.84147098480789650665250232163029899962256306079837)
|
||
|
cosh(z1) = 0.54030230586813971740093660744297660373231042061792
|
||
|
tanh(z1) = (0.00000000000000000000000000000000000000000000000000,1.55740772465490223050697480745836017308725077238152)
|
||
|
asinh(z1) = (0.00000000000000000000000000000000000000000000000000,1.57079632679489661923132169163975144209858469968755)
|
||
|
acosh(z1) = (0.88137358701954302523260932497979230902816032826163,1.57079632679489661923132169163975144209858469968755)
|
||
|
atanh(z1) = (0.00000000000000000000000000000000000000000000000000,0.78539816339744830961566084581987572104929234984378)
|
||
|
|
||
|
//]
|
||
|
*/
|