60 lines
2.3 KiB
C++
60 lines
2.3 KiB
C++
|
// Copyright Nick Thompson, 2017
|
||
|
// Use, modification and distribution are subject to the
|
||
|
// Boost Software License, Version 1.0.
|
||
|
// (See accompanying file LICENSE_1_0.txt
|
||
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <cmath>
|
||
|
#include <boost/math/quadrature/tanh_sinh.hpp>
|
||
|
#include <boost/math/quadrature/sinh_sinh.hpp>
|
||
|
#include <boost/math/quadrature/exp_sinh.hpp>
|
||
|
|
||
|
using boost::math::quadrature::tanh_sinh;
|
||
|
using boost::math::quadrature::sinh_sinh;
|
||
|
using boost::math::quadrature::exp_sinh;
|
||
|
using boost::math::constants::pi;
|
||
|
using boost::math::constants::half_pi;
|
||
|
using boost::math::constants::half;
|
||
|
using boost::math::constants::third;
|
||
|
using boost::math::constants::root_pi;
|
||
|
using std::log;
|
||
|
using std::cos;
|
||
|
using std::cosh;
|
||
|
using std::exp;
|
||
|
using std::sqrt;
|
||
|
|
||
|
int main()
|
||
|
{
|
||
|
std::cout << std::setprecision(std::numeric_limits<double>::digits10);
|
||
|
double tol = sqrt(std::numeric_limits<double>::epsilon());
|
||
|
// For an integral over a finite domain, use tanh_sinh:
|
||
|
tanh_sinh<double> tanh_integrator(tol, 10);
|
||
|
auto f1 = [](double x) { return log(x)*log(1-x); };
|
||
|
double Q = tanh_integrator.integrate(f1, (double) 0, (double) 1);
|
||
|
double Q_expected = 2 - pi<double>()*pi<double>()*half<double>()*third<double>();
|
||
|
|
||
|
std::cout << "tanh_sinh quadrature of log(x)log(1-x) gives " << Q << std::endl;
|
||
|
std::cout << "The exact integral is " << Q_expected << std::endl;
|
||
|
|
||
|
// For an integral over the entire real line, use sinh-sinh quadrature:
|
||
|
sinh_sinh<double> sinh_integrator(tol, 10);
|
||
|
auto f2 = [](double t) { return cos(t)/cosh(t);};
|
||
|
Q = sinh_integrator.integrate(f2);
|
||
|
Q_expected = pi<double>()/cosh(half_pi<double>());
|
||
|
std::cout << "sinh_sinh quadrature of cos(x)/cosh(x) gives " << Q << std::endl;
|
||
|
std::cout << "The exact integral is " << Q_expected << std::endl;
|
||
|
|
||
|
// For half-infinite intervals, use exp-sinh.
|
||
|
// Endpoint singularities are handled well:
|
||
|
exp_sinh<double> exp_integrator(tol, 10);
|
||
|
auto f3 = [](double t) { return exp(-t)/sqrt(t); };
|
||
|
Q = exp_integrator.integrate(f3, 0, std::numeric_limits<double>::infinity());
|
||
|
Q_expected = root_pi<double>();
|
||
|
std::cout << "exp_sinh quadrature of exp(-t)/sqrt(t) gives " << Q << std::endl;
|
||
|
std::cout << "The exact integral is " << Q_expected << std::endl;
|
||
|
|
||
|
|
||
|
|
||
|
}
|