2018-01-12 21:47:58 +01:00
|
|
|
// Copyright Christopher Kormanyos 2013.
|
|
|
|
// Copyright Paul A. Bristow 2013.
|
|
|
|
// Copyright John Maddock 2013.
|
|
|
|
|
|
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
|
|
// (See accompanying file LICENSE_1_0.txt or
|
|
|
|
// copy at http://www.boost.org/LICENSE_1_0.txt).
|
|
|
|
|
|
|
|
#ifdef _MSC_VER
|
|
|
|
# pragma warning (disable : 4512) // assignment operator could not be generated.
|
|
|
|
# pragma warning (disable : 4996) // assignment operator could not be generated.
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include <iostream>
|
|
|
|
#include <limits>
|
|
|
|
#include <vector>
|
|
|
|
#include <algorithm>
|
|
|
|
#include <iomanip>
|
|
|
|
#include <iterator>
|
|
|
|
|
|
|
|
//[bessel_zeros_iterator_example_1
|
|
|
|
|
|
|
|
/*`[h5 Using Output Iterator to sum zeros of Bessel Functions]
|
|
|
|
|
|
|
|
This example demonstrates summing zeros of the Bessel functions.
|
|
|
|
To use the functions for finding zeros of the functions we need
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <boost/math/special_functions/bessel.hpp>
|
|
|
|
|
|
|
|
/*`We use the `cyl_bessel_j_zero` output iterator parameter `out_it`
|
|
|
|
to create a sum of ['1/zeros[super 2]] by defining a custom output iterator:
|
|
|
|
*/
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
struct output_summation_iterator
|
|
|
|
{
|
|
|
|
output_summation_iterator(T* p) : p_sum(p)
|
|
|
|
{}
|
|
|
|
output_summation_iterator& operator*()
|
|
|
|
{ return *this; }
|
|
|
|
output_summation_iterator& operator++()
|
|
|
|
{ return *this; }
|
|
|
|
output_summation_iterator& operator++(int)
|
|
|
|
{ return *this; }
|
|
|
|
output_summation_iterator& operator = (T const& val)
|
|
|
|
{
|
|
|
|
*p_sum += 1./ (val * val); // Summing 1/zero^2.
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
private:
|
|
|
|
T* p_sum;
|
|
|
|
};
|
|
|
|
|
|
|
|
//] [/bessel_zeros_iterator_example_1]
|
|
|
|
|
|
|
|
int main()
|
|
|
|
{
|
|
|
|
try
|
|
|
|
{
|
|
|
|
//[bessel_zeros_iterator_example_2
|
|
|
|
|
|
|
|
/*`The sum is calculated for many values, converging on the analytical exact value of `1/8`.
|
|
|
|
*/
|
|
|
|
using boost::math::cyl_bessel_j_zero;
|
|
|
|
double nu = 1.;
|
|
|
|
double sum = 0;
|
|
|
|
output_summation_iterator<double> it(&sum); // sum of 1/zeros^2
|
|
|
|
cyl_bessel_j_zero(nu, 1, 10000, it);
|
|
|
|
|
|
|
|
double s = 1/(4 * (nu + 1)); // 0.125 = 1/8 is exact analytical solution.
|
|
|
|
std::cout << std::setprecision(6) << "nu = " << nu << ", sum = " << sum
|
|
|
|
<< ", exact = " << s << std::endl;
|
|
|
|
// nu = 1.00000, sum = 0.124990, exact = 0.125000
|
|
|
|
//] [/bessel_zeros_iterator_example_2]
|
|
|
|
}
|
2021-10-05 21:37:46 +02:00
|
|
|
catch (std::exception const& ex)
|
2018-01-12 21:47:58 +01:00
|
|
|
{
|
|
|
|
std::cout << "Thrown exception " << ex.what() << std::endl;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
} // int_main()
|
|
|
|
|
|
|
|
/*
|
|
|
|
Output:
|
|
|
|
|
|
|
|
nu = 1, sum = 0.12499, exact = 0.125
|
|
|
|
*/
|