231 lines
7.1 KiB
C++
231 lines
7.1 KiB
C++
|
///////////////////////////////////////////////////////////////
|
||
|
// Copyright 2012 John Maddock. Distributed under the Boost
|
||
|
// Software License, Version 1.0. (See accompanying file
|
||
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_
|
||
|
|
||
|
#include <boost/multiprecision/cpp_int.hpp>
|
||
|
#include <iostream>
|
||
|
#include <iomanip>
|
||
|
#include <vector>
|
||
|
|
||
|
//[FAC1
|
||
|
|
||
|
/*`
|
||
|
In this simple example, we'll write a routine to print out all of the factorials
|
||
|
which will fit into a 128-bit integer. At the end of the routine we do some
|
||
|
fancy iostream formatting of the results:
|
||
|
*/
|
||
|
/*=
|
||
|
#include <boost/multiprecision/cpp_int.hpp>
|
||
|
#include <iostream>
|
||
|
#include <iomanip>
|
||
|
#include <vector>
|
||
|
*/
|
||
|
|
||
|
void print_factorials()
|
||
|
{
|
||
|
using boost::multiprecision::cpp_int;
|
||
|
//
|
||
|
// Print all the factorials that will fit inside a 128-bit integer.
|
||
|
//
|
||
|
// Begin by building a big table of factorials, once we know just how
|
||
|
// large the largest is, we'll be able to "pretty format" the results.
|
||
|
//
|
||
|
// Calculate the largest number that will fit inside 128 bits, we could
|
||
|
// also have used numeric_limits<int128_t>::max() for this value:
|
||
|
cpp_int limit = (cpp_int(1) << 128) - 1;
|
||
|
//
|
||
|
// Our table of values:
|
||
|
std::vector<cpp_int> results;
|
||
|
//
|
||
|
// Initial values:
|
||
|
unsigned i = 1;
|
||
|
cpp_int factorial = 1;
|
||
|
//
|
||
|
// Cycle through the factorials till we reach the limit:
|
||
|
while(factorial < limit)
|
||
|
{
|
||
|
results.push_back(factorial);
|
||
|
++i;
|
||
|
factorial *= i;
|
||
|
}
|
||
|
//
|
||
|
// Lets see how many digits the largest factorial was:
|
||
|
unsigned digits = results.back().str().size();
|
||
|
//
|
||
|
// Now print them out, using right justification, while we're at it
|
||
|
// we'll indicate the limit of each integer type, so begin by defining
|
||
|
// the limits for 16, 32, 64 etc bit integers:
|
||
|
cpp_int limits[] = {
|
||
|
(cpp_int(1) << 16) - 1,
|
||
|
(cpp_int(1) << 32) - 1,
|
||
|
(cpp_int(1) << 64) - 1,
|
||
|
(cpp_int(1) << 128) - 1,
|
||
|
};
|
||
|
std::string bit_counts[] = { "16", "32", "64", "128" };
|
||
|
unsigned current_limit = 0;
|
||
|
for(unsigned j = 0; j < results.size(); ++j)
|
||
|
{
|
||
|
if(limits[current_limit] < results[j])
|
||
|
{
|
||
|
std::string message = "Limit of " + bit_counts[current_limit] + " bit integers";
|
||
|
std::cout << std::setfill('.') << std::setw(digits+1) << std::right << message << std::setfill(' ') << std::endl;
|
||
|
++current_limit;
|
||
|
}
|
||
|
std::cout << std::setw(digits + 1) << std::right << results[j] << std::endl;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*`
|
||
|
The output from this routine is:
|
||
|
[pre
|
||
|
1
|
||
|
2
|
||
|
6
|
||
|
24
|
||
|
120
|
||
|
720
|
||
|
5040
|
||
|
40320
|
||
|
................Limit of 16 bit integers
|
||
|
362880
|
||
|
3628800
|
||
|
39916800
|
||
|
479001600
|
||
|
................Limit of 32 bit integers
|
||
|
6227020800
|
||
|
87178291200
|
||
|
1307674368000
|
||
|
20922789888000
|
||
|
355687428096000
|
||
|
6402373705728000
|
||
|
121645100408832000
|
||
|
2432902008176640000
|
||
|
................Limit of 64 bit integers
|
||
|
51090942171709440000
|
||
|
1124000727777607680000
|
||
|
25852016738884976640000
|
||
|
620448401733239439360000
|
||
|
15511210043330985984000000
|
||
|
403291461126605635584000000
|
||
|
10888869450418352160768000000
|
||
|
304888344611713860501504000000
|
||
|
8841761993739701954543616000000
|
||
|
265252859812191058636308480000000
|
||
|
8222838654177922817725562880000000
|
||
|
263130836933693530167218012160000000
|
||
|
8683317618811886495518194401280000000
|
||
|
295232799039604140847618609643520000000
|
||
|
]
|
||
|
*/
|
||
|
|
||
|
//]
|
||
|
|
||
|
//[BITOPS
|
||
|
|
||
|
/*`
|
||
|
In this example we'll show how individual bits within an integer may be manipulated,
|
||
|
we'll start with an often needed calculation of ['2[super n] - 1], which we could obviously
|
||
|
implement like this:
|
||
|
*/
|
||
|
|
||
|
using boost::multiprecision::cpp_int;
|
||
|
|
||
|
cpp_int b1(unsigned n)
|
||
|
{
|
||
|
cpp_int r(1);
|
||
|
return (r << n) - 1;
|
||
|
}
|
||
|
|
||
|
/*`
|
||
|
Calling:
|
||
|
|
||
|
std::cout << std::hex << std::showbase << b1(200) << std::endl;
|
||
|
|
||
|
Yields as expected:
|
||
|
|
||
|
[pre 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF]
|
||
|
|
||
|
However, we could equally just set the n'th bit in the result, like this:
|
||
|
*/
|
||
|
|
||
|
cpp_int b2(unsigned n)
|
||
|
{
|
||
|
cpp_int r(0);
|
||
|
return --bit_set(r, n);
|
||
|
}
|
||
|
|
||
|
/*`
|
||
|
Note how the `bit_set` function sets the specified bit in its argument and then returns a reference to the result -
|
||
|
which we can then simply decrement. The result from a call to `b2` is the same as that to `b1`.
|
||
|
|
||
|
We can equally test bits, so for example the n'th bit of the result returned from `b2` shouldn't be set
|
||
|
unless we increment it first:
|
||
|
|
||
|
assert(!bit_test(b1(200), 200)); // OK
|
||
|
assert(bit_test(++b1(200), 200)); // OK
|
||
|
|
||
|
And of course if we flip the n'th bit after increment, then we should get back to zero:
|
||
|
|
||
|
assert(!bit_flip(++b1(200), 200)); // OK
|
||
|
*/
|
||
|
|
||
|
//]
|
||
|
|
||
|
int main()
|
||
|
{
|
||
|
print_factorials();
|
||
|
|
||
|
std::cout << std::hex << std::showbase << b1(200) << std::endl;
|
||
|
std::cout << std::hex << std::showbase << b2(200) << std::endl;
|
||
|
assert(!bit_test(b1(200), 200)); // OK
|
||
|
assert(bit_test(++b1(200), 200)); // OK
|
||
|
assert(!bit_flip(++b1(200), 200)); // OK
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
|
||
|
Program output:
|
||
|
|
||
|
1
|
||
|
2
|
||
|
6
|
||
|
24
|
||
|
120
|
||
|
720
|
||
|
5040
|
||
|
40320
|
||
|
................Limit of 16 bit integers
|
||
|
362880
|
||
|
3628800
|
||
|
39916800
|
||
|
479001600
|
||
|
................Limit of 32 bit integers
|
||
|
6227020800
|
||
|
87178291200
|
||
|
1307674368000
|
||
|
20922789888000
|
||
|
355687428096000
|
||
|
6402373705728000
|
||
|
121645100408832000
|
||
|
2432902008176640000
|
||
|
................Limit of 64 bit integers
|
||
|
51090942171709440000
|
||
|
1124000727777607680000
|
||
|
25852016738884976640000
|
||
|
620448401733239439360000
|
||
|
15511210043330985984000000
|
||
|
403291461126605635584000000
|
||
|
10888869450418352160768000000
|
||
|
304888344611713860501504000000
|
||
|
8841761993739701954543616000000
|
||
|
265252859812191058636308480000000
|
||
|
8222838654177922817725562880000000
|
||
|
263130836933693530167218012160000000
|
||
|
8683317618811886495518194401280000000
|
||
|
295232799039604140847618609643520000000
|
||
|
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
|
||
|
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
|
||
|
*/
|